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ABSTRACT

Deformable modeling of thin shell-like and other objectsén@otential application in
robot grasping, medical robotics, home robots, and so oa.ability to manipulate electrical
and optical cables, rubber toys, plastic bottles, ropespgical tissues, and organs is an
important feature of robot intelligence. However, gragmhdeformable objects has remained
an underdeveloped research area. When a robot hand appliestéograsp a soft object,
deformation will result in the enlarging of the finger contaegions and the rotation of the
contact normals, which in turn will result in a changing wekrspace. The varying geometry
can be determined by either solving a high order differéeti@ation or minimizing potential
energy. Efficient and accurate modeling of deformationsusial for grasp analysis. It helps
us predict whether a grasp will be successful from its findggcgment and exerted force, and
subsequently helps us design a grasping strategy.

The first part of this thesis extends the linear and nonlisbal theories to describe exten-
sional, shearing, and bending strains in terms of geomietrariants including the principal
curvatures and vectors, and the related directional andr@o derivatives. To our knowl-
edge, this is the first non-parametric formulation of thielsbktrains. A computational pro-
cedure for the strain energy is then offered for generalmatac shells. In practice, a shell
deformation is conveniently represented by a subdivisiofase (12). We compare the results
via potential energy minimization over a couple of benchomoblems with their analytical
solutions and the results generated by two commercial aoéisvABAQUS and ANSYS. Our
method achieves a convergence rate an order of magnituderhiEexperimental validation in-

volves.regular.and.freeform shell-like objects (of variouaterials) grasped by a robot hand,
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Xi

with the results compared against scanned 3-D data (agcOrd27mm). Grasped objects
often undergo sizable shape changes, for which a much higbeeling accuracy can be
achieved using the nonlinear elasticity theory than itedincounterpart. (In this part, the
derivations of the transformation based on geometric iamés and the strain computation on
a general parametric shell, and the interpretation of tloengry of strains were performed
by my thesis advisor Yan-Bin Jia.)

The second part numerically studies two-finger graspinge@dminable curve-like objects
under frictional contacts. The action is like squeezingfddeation is modeled by a degen-
erate version of the thin shell theory. Several differerice® rigid body grasping are shown.
First, under a squeeze, the friction cone at each finger coratates in a direction that de-
pends on the deformable object’s global geometry, whicHigaghat modeling is necessary
for grasp prediction. Second, the magnitude of the grasfunge has to be above certain
threshold to achieve equilibrium. Third, the set of feasifohger placements may increase
significantly compared to that for a rigid object of the satnape. Finally, the ability to resist
disturbance is bounded in the sense that increasing theimdgrof an external force may

result in the breaking of the grasp.
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CHAPTER 1. INTRODUCTION

Deformable objects are ubiquitous in the world surroundiagon all aspects from daily
life to industry. The need to study such shapes and model iediaviors arises in a wide
range of applications. In image processing, deformableesuand surfaces have been used to
segment images and volumes. The use of a deformable modslyussults in a faster and
more robust segmentation technique that guarantees snassthetween image slices.

In the robot-assisted surgery, since most human organsedoentable, the integration
of physics-based deformable modeling has the potentiahpwave dexterity, precision, and
speed during the surgery as well as enable some new medittadse Virtual/augmented re-
ality based real time and high fidelity simulation and traghsystems help enhancing medical
capability, in which deformable modeling plays a very intpot role.

In haptics, touch feedback from interaction with a deforhaalbject is directly influenced
by the changing size and shape of the “contact” surface &ath.finger movement planning
and force control will rely on the updates of the local shajpeootact and the global shape of
the object, as well as the force distribution over the cdraeea.

Deformation related interactive graphics applicatiorgpuiee a continuously growing de-
gree of visual realism. In addition to the display qualityisi especially the way in which
the physical behavior eventually determines the degreeatism. All these have led to rapid
development of the field, where state-of-the-art resutisifvery different areas—theoretical
physics, differential geometry, numerical methods, maekearning and computer graphics—

are applied to find solutions.
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1.1 Robot Grasping

In robotics,the ability to manipulate deformable objects is an indisaée part of a robot
hand'’s dexterity and an important feature of intelligenGeasping of rigid objects has been
an active area in the last two decades (7). The geometricadion for form-closure, force-
closure, and equilibrium grasps is now well understood. &i@x, grasping of deformable
objects has received much less attention until recently.

For rigid objects, a grasp of an object achieves force-cailnen it can resist any external
wrench exerted on the grasped object. If any motion of ancbigerevented, form-closure is
achieved. There are numerous metrics (35; 37; 41; 78) fapgratimization using geometric
algorithms or nonlinear programming techniques.

Grasping of a deformable object is quite different from tbag rigid one. Since the
number of degrees of freedom of a deformable object is iefinitcannot be restrained by
only a finite set of contacts. Consequently, form-closurenisonger applicable. Does force-
closure still apply? Consider two fingers squeezing a defblenabject in order to grasp
it. The normal at each contact point changes its directiordaes the corresponding contact
friction cone. Even if the two fingers were not initially pttat close-to-antipodal positions,
the contact friction cones may have rotated toward eachr,otbsulting in a force-closure
grasp. At the same time, the magnitude of the external faresually bounded (82). If the
magnitude exceeds some limit, the grasp will be broken.

Meanwhile, grasp analysis is no longer a purely geometoblem. The wrench space
will change as a result of varying geometry which can be a=tly either solving high order
differential equation or minimizing potential energy. Rdlie modeling of the deformations
is therefore crucial for grasp analysis. Most of the devetbpodels are based on the linear
elasticity, which is geometrically inexact for large defations.

This thesis investigates shape modeling for shell-likeeclsj that are grasped by a robot

hand. A shell is a thin body bounded by two curved surfacesselttistance (i.e., the shell
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thickness) is very small in comparison with the other dinn@ms The thesis also includes a
preliminary study of several issues in two-finger graspihgeformable thin-curve-like ob-

jects which are lower dimensional analogues to the thin siietiel. The high aspect ratio of
such thin objects often leads to instability in the compatatThe computational cost of mod-
eling the physical process accurately is usually high. As$athe robot grasping application
is concerned, formulating models which are both physicatigurate and numerically robust

is very important.

1.2 Some Terminologies of Robot Grasping

e Force-Closure

A grasp of an object is a force-closure grasp if arbitrancésrand moments can be

exerted on this object through contacts.

e Form-Closure
A grasp of an object is a form-closure grasp if any motion efabject is prevented.
e Equilibrium

A grasp is in equilibrium if the sum of the forces and momenextd on the object is

Zero.

e Point contact with friction

A finger can exert any force inside the friction cone at thetacipoint.

1.3 Overview

The rest of the manuscript is organized as follows. Chaptarr2eygs related work in
robot manipulation and deformable modeling. Chapter 3 guesmecessary background in

differential geometry.
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Chapter 4 offers a clear geometric interpretations of thé strains. Section 4.1 presents
the displacement field on a shell which describes the defimmaompletely. Based on the
linear elasticity theory of shells, Section 4.2 estabkstiat the strains and strain energy of a
shell under a displacement field are determined by geomietaciants of its middle surface
including the two principal curvatures and two principati@s. A computational procedure
for arbitrary parametric shells is then described. Sedti@frames the theory of nonlinear
elasticity of shells in terms of geometric invariants.

Section 4.4 sets up the subdivision-based displacemenhtfiel describes the stiffness ma-
trix and the energy minimization process. Section 4.5 copgine simulation results over two
benchmark problems with their analytical solutions andséhby two commerical softwares
ABAQUSandANSYSSection 4.6 experimentally investigates the modelingedbanable ob-
jects grasped by a BarrettHand. It compares the linear tHeogmall deformations and the
nonlinear theory for large deformations through validatémainst range data generated by a
3-D scanner. We will see that nonlinear elasticity basedetiog yields much more accu-
rate results when large grasping forces are applied. Settibdiscusses modeling errors and
future extensions.

Chapter 5 studies some issues in grasping of deformable-tikevebjects. Section 5.1
transforms both linear and nonlinear modeling technigua® thin shells to thin curved ob-
jects. A cubic B-spline based nonlinear minimization of tbéemtial energy is then described.
Section 5.2 gives a frame under which two-finger squeezegrean be analyzed. A proce-
dure of finding minimum graspable force magnitude is thesgmead. Graspable segments
are compared for a rigid object and a deformable one. Eff#fatgerting a disturbance force
to a squeeze grasp are investigated. In Chapter 6, we sunenthezavork and discuss the

future directions.
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CHAPTER 2. RELATED WORK

Grasping is a very active research area in robotics. Defolemaodeling has been studied
in the elasticity theory, solid mechanics, robotics, anthpoter graphics with a range of

applications.

2.1 Robot Grasping

2.1.1 Grasping of Rigid Objects

Grasping of rigid objects has been extensively studiedendht two decades (7). Grasps
can be classified into either force or form closure. They atally investigated based on rigid
body kinematics. For a rigid object, the distance betwegrwa points on the object is frame
invariant, subsequently, a set of forces applied to a ritpjgat at different locations can be
converted to an equivalent combination of force and momesbme representative points.

A grasp of a rigid object achieves force-closure when it asist any external wrench
exerted on the grasped object (46). If any motion of an obgeptevented, form-closure is
achieved. In other words, form-closure means immobility aeighboring configuration of
the object will result in collision with an obstacle.

For rigid objects, grasp analysis is a purely geometric lgrmb Force-closure for two-
finger grasping of a polygon is well understood based on gagn@®4). Such a grasp is
force closure if the intersection of the two contact friaticones contains the line segment
connecting the two contact points. Nguyen (54) also intceduthe concept of independent

regions, i.e. regions on the object boundary such that arfingsach region ensures a force-
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closure grasp independently of the exact contact point. é¥eldped a geometrical approach
to determine the maximum independent regions on polygdnjacts using four frictionless
contacts and two frictional contacts.

The problem of determining independent regions for polgy@n polyhedral objects has
also been studied in (63; 64; 74; 16). Ponce et al. (65) atlizell decomposition to compute
pairs of maximal-length segments on a piecewise-smoothedu2D object. Inside these
segments, fingers can be positioned independently witle fdasure guaranteed.

In (61), an approach to determine independent regions onbj&xis based on initial ex-
amples was proposed. In this method, the selection of a gnitwal example for a given object
remains as a critical step. The running time is polynomiahim number of contacts, which
makes it possible to deal with grasps with relatively largenbers of contacts.

Blake (8) classified planar grasps into three types usingy/tineetry set, the anti-symmetry
set, and the critical set along with the friction functiora (B4) gave a fast algorithm to com-
pute all grasps at pairs of antipodal points of a curved pasetl on differential geometry.
He divided the part into concave and convex pieces at pointsflexion and used iterative
methods including bisection to compute the grasps.

In (50), aO(n*logn)-time algorithm was proposed to compute an optimal thregefin
planar grasp by maximizing the radius of a disk centeredeabtigin and contained in the
convex hull of the three unit normal vectors at the finger aot®t Assuming rounded finger
tips, an optimality for force-closure grasps was introdlite(49) where efficient algorithms
were developed for polygons and polyhedra.

Recently, an algorithm to compute form-closure grasps of Bpats described by discrete
points has been presented in (42). This algorithm is basexhoterative search through the
points. Iterations are only needed to find some charadtepsints of the object and they
do not imply hard iterative search procedures with the riskaking in local minimum. The
method can deal with some uncertainty between the discogtésgn the object description.

There.are.many-methods for the planning of optimal grasps.e&imfor measuring the
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sensitivity of a grasp with respect to positioning errora ba found in (9). The grasp with
insensitivity to positioning errors and ease of computai® considered good in terms of

overall performance.

2.1.2 Grasping of Deformable Objects

Compared with an abundance of research in grasping of rigielctsbin the last two
decades, less attention has been paid to grasping of ddftamigjects. Wakamatsu et al. (82)
examined whether force-closure and form-closure can bbeapip grasping of deformable
objects. Form-closure is not applicable because defoenaltjects have infinite degrees of
freedom and cannot be constrained by a finite number of ctsntddey proposed the con-
cept of force-closure for deformable objects with boundgaliad forces and defined bounded
force-closure as grasps that can resist any external fatbenthe bound.

The deformation-space (D-space) of an object was intratlurc€24) as the C-space of all
its mesh vertices, with modeling based on linear elasteitgt frictionless contact. Deform
closure is defined in a situation where positive work is ndetderelease the part from the
frictionless contacts with fingers. This definition has feamvariant property. This model is
energy-based and not experimentally verified.

Howard and Bekey (29) modeled 3D deformable objects usingeacionnected particles
and springs model, which formed a discretization of thaahibject. The motions of par-
ticles were calculated using the Newtonian equations. Aalewetwork was used to control
a manipulator. They used deformation to learn the progedig¢he deformable objects, and
thus determined the minimum force needed to lift the deftrlmabject.

Work on robotic manipulation of deformable objects has beestly limited to linear and
meshed objects (84; 51). Most recently, a “fishbone” modsétan differential geometry for
belt objects was presented and experimentally verified (83his model, the deformed shape

of a belt object was estimated by minimizing the potenti&rgg. The nonlinear minimization
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was performed based on the Ritz’s method. The problem undenefeic constraints was
converted into a unconditional minimization problem witagrange multipliers. The model
only works fordevelopable surfaces

Hirai et al. (31) proposed a control law for grasping of defable objects, using both
visual and tactile methods to control the motion of a defdsl@abbject. In their method,
although uncertainties existed during the handling precgsasping and manipulation were
performed simultaneously. This control strategy was edraut with no need of deformable
modeling.

Saha and Isto (71) proposed a motion planning method for pu&ation of deformable
linear objects (DLO). This motion planner constructed aotogically-biased probabilistic
roadmap in the DLO’s configuration space. It also did not esany specific physical model
of the DLO. Motion plannings for several objects (rope, sefgtrand etc.) could be realized
by their method.

Holleman et al. (30) presented a path planning algorithnafitexible surface patch. They
used a Bzier surface and an approximate energy function to modetmeation of the patch.
This energy model penalized deformations that induce highatures, extension, and shear
of the surface. They presented experimental results osga#inned for parts generated by a
search graph using probabilistic roadmap.

Knotting of flexible linear object such as a wire or rope carebhsily done with a vision
system (47). A recognition method was proposed to obtaistitueture of rope from sensor
information through the cameras when a robot manipulatep@ mwo knot invariants, Jones
and Bracket Polynomials, were utilized. Unknotting (40)¢d &motting (83) are the typical
manipulation operations on this type of linear objects,chlgan be carried out with no need
of deformable modeling.

Doulgeri and Peltekis (18) created a control model for malaifing a flexible part by a
dual arm system with rolling contacts on a plane. To obtaireficient model of the part

dynamies;-they-treated-part deformations as motion of atpoass that was at the point of
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maximum deformation at each contact. A feedback contrategy initially for stable grasp
of a rigid object was used for a flexible object. They simudatee part motion to show the

performance of their control loop.

2.2 Deformable Modeling

2.2.1 Computer Graphics

Modeling of deformation has been extensively studied inpater graphics. Gibson and
Mirtich (23) gave a comprehensive review. The main objectiv this field is to generate
visual effects efficiently rather than to be physically aete. Discrepancies with the theory of
elasticity are tolerated, and experiments with real okjaeed not be conducted. For instance,
the widely used formulation (75) on the surface strain epergthe integral sum of the squares
of the norms of the changes in the first and second fundamfamtak, does not follow the
theory of elasticity.

In this field, there are generally two approaches to modele@igrmable objects: geometry-
based and physics-based (23). In a geometry-based appspéioks and spline surfaces such
as Bezier curves, B-splines, non-uniform rational B-splines RBE), are often used as rep-
resentations (4; 19). In (3), for free-form deformatiore thormal vector of the deformed
surface can be computed from the surface normal vector ofitidkeformed surface and a
transformation matrix. In this way, deformations can belga®mbined in a hierarchical
structure.

Today'’s interactive graphics applications, such as coerggames or simulators, demand
a continuously growing degree of visual realism. In additio the display quality, it is es-
pecially the way in which the physical behavior is simulatedt eventually determines the
degree of realism experienced by the user. Physics-basedlimg (53) of deformation takes
into account the mechanics of materials and dynamics totaicetegree. It combines dif-

ferential geometry, newtonian dynamics, continuum meidsamumerical methods, vector
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calculus, and computer graphics. The Finite Element Me{Rk&M), the Finite Differences
Method, and the Finite Volume Method are powerful continunethanics based methods.

Mass-spring systems simply consist of point masses coedieéogether by a network of
massless springs. Though slow on simulating material wigh &tiffness, they are used exten-
sively in animation (11), facial modeling (87; 76), surgé€t$), and simulations of cloth (2),
and animals (81). However, unlike the FEM and the Finite é&dhces Methods, which are
built on elasticity theory, mass-spring systems are no¢ssarily accurate.

The skeleton-based method (45) achieves efficiency of oheflole modeling by interpo-
lation. It computes the stresses/strains only at contaotpand geometrically salient points
and then interpolates over the entire surface.

Deformable model-based techniques offer a powerful agbremmedical image analysis.
They have been applied to images generated by computed tapigg(CT), magnetic reso-
nance (MR), and ultrasound. It is especially useful in th&gascluding segmentation and
matching, where the traditional image processing tectesqre not sufficient. The “snake
model” is widely used in medical image analysis (48). Snalkesplanar deformable curves
that are often used to approximate edges or contours in @&seguf images. They exhibit
two principal behaviours: stretching and bending. Defdiomaof the snake is obtained by

minimizing the total potential energy.

2.2.2 Elasticity

The FEM (21; 72; 5; 22), for modeling deformations of a widege of shapes, represents
a body as a mesh structure, and computes the stress, strdidisplacement everywhere in-
side the body. FEMs are used to model the deformations of@amaitge of shapes: fabric (13),
a deformable object interacting with a human hand (26), hmutisgue in a surgery (10), etc.

If an elastic object is sampled over a regular spatial gniel differential equation governing

the motion can be discretized using finite differences. Asg&amplementation is concerned,
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this method is easier than the general FEM. Pioneering usagenputer graphics was traced
back in (75). The directional derivative of the energy fumcal was discretized using the
Finite Differences Method.

The boundary element method (BEM) (33) solves displacenzmt$orces on the bound-
ary surface, and thus is more efficient than the FEM. Roughdalsipg, the integral form of
the equation of motion is transformed into a surface intelgyaapplying the Green-Gauss
theorem. The method achieves substantial speedup bebtausede dimensional problem is
reduced to two dimensions. However, the approach only wiankebjects whose interior is
composed of a homogeneous material.

Small deformation of a linear object can be modeled usingrbel@ments in FEM (80).
Large deformation can be modeled by the nonlinear FEM. Thes&as formulation was
introduced to describe linear object deformation (58). Aggoat element has six degrees of
freedom: three for translation and three for rotation. h daal with geometric non-linearity.
This model reduces to a system of spatial ordinary difféaéetjuations which can be solved
efficiently.

Most recently, modeling based on differential geometrylieen proposed by Wakamatsu
and Hirai (84). Their method described linear object defaram, i.e., flexure, torsion, and
extension, by four functions: three Eulerian angles andedtensional strain. The deformed
shape was decided by an algorithm based on the Ritz’'s methbeir Gomputation results
were experimentally verified by measuring the deformed sluda sheet of paper.

Thin shell finite elements originated in the mid-1960s. Yahgl. (88; 89) gave two com-
prehensive surveys on thin shell finite elements. It is Wetwn that the convergence of thin
shell elements requires! interpolation, which is difficult. From a view point of engiering,
it is crucial to formulate models which are both physicaltgarate and numerically robust for
arbitrary shapes.

The bending energy of a deformed shell contains second dedatives of the displace-

ment. lnordertoensure that it is finite, the basis functimerpolating the displacement
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field have to be square integrable. Cirak et al. (12) introdwe FEM based on subdivision
surfaces which meets such requirement. Assuming linesati@ty, they presented simulation
results for planar, cylindrical, and spherical shells orlhe work was extended in (77) to
model dynamics in textile simulation.

Other thin shell FEMs include flat plates (91), axisymmeghells (27; 62), and curve ele-
ments (14). More recently, computational shell analysth@éFEM has employed techniques
including degenerated shell approach (32), stress-edtiliased formulations (1), integration
techniques (6), 3-D elasticity elements (17), etc.

Picinbono et al. (60) proposed rotation invariant nonlirieaM to the modeling of anisotropic
soft tissues for real-time simulation. They solved the pgobof rotational invariance of de-
formations and took into account the incompressible ptoggeof biological tissues.

For grasping, it is common to ignore dynamics in modelingodeitions using energy-
based methods, which allows us to treat the grasping proflessistatically. In computer
graphics field, especially for real time simulation, it iscessary to simulatdynamicde-
formable objects. In this case, the unknown position vefgiti is given implicitly as the solu-
tion of some differential equation. The simplest numeriggdgration scheme is explicit Euler
integration, where the time derivatives are replaced byefidifferences. Stability and accu-
racy are two main standards to evaluate the performance wh&mcal integration method.

Geometrically nonlinear FEM has been applied to the glok&bmnation with real-time
haptics rendering for solid objects by Zhuang and Canny (3@gy numerically integrated
the differential equations by explicit Newmark scheme. iideo to realize real-time render-
ing, they approximated the stiffness matrix by a diagonatrimaThis matrix was obtained
by lumping the rows of the original matrix. The diagonaliaatprocess was equivalent to
approximating the mass continuum as concentrated massestanodal point of the mesh.
In this way, the distributed mass is converted to a partigstesn.

Linear differential equations yield linear algebraic gyss which can be solved more effi-

ciently-and.more stably-than nonlinear ones. Unfortunatelgarized elastic forces are only
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valid for small deformations. Large rotational deformasgyield highly inaccurate artifacts.
To remove these artifacts, Mer and Gross (52) extracted the rotation part of the daeéor
tion for each finite element and computed the forces witheesip the non-rotated reference

frame. This method yields fast and stable visual results.
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CHAPTER 3. SOME BACKGROUND IN DIFFERENTIAL
GEOMETRY

This chapter reviews some basics in differential geometricivare needed in the follow-
ing chapters. For more on elementary differential geometeyrefer to (57; 66). The reader
may skip this chapter if he/she is familiar with the content.

Throughout this thesis, we will denote Iy the derivative of a functiorf (u) with respect
tou, and byf,, the second derivative with respect to the same variableveiitiors will appear
in the bold face. Curves, surfaces, curvatures, and torgidhse denoted by Greek letters by
convention. Points, tangents, normals and other geomegciors will be denoted by English

letters, also by convention.

3.1 Plane Curves

Leto(u) be a curve in two dimensions as shown in Figure 3.1.tlked the tangent vector
of o. We have

t=o,. (3.1)

The velocity ofo atu is the tangent vectdr. A curve is regular if its speegk|| is not zero ev-
erywhere. To make physical sense, the curve is parametnzact length. Such parametriza-
tion leads to a unit speed curve. Computation will easilyycawuer to arbitrary speed curves.

The normaln of the curve is the unit vector obtained by rotatingounterclockwise by, .
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Figure 3.1 A curve.

Now leto (u) = (z(u),y(u))’. Then

s @)’
Vit
. T
n:( Yu; Tu)

NGRS

The curvatures is the rate of change of direction at some point of the tang@vith respect

to arc length. For a 2D curve, we have

L
The following equations hold for vectotaandn.

t, = kn, (3.2)

n, = —kt. (3.3)

The proof can be found from a standard differential geomtetxtbook.

3.2 Surfaces

Let o(u,v) be a surface patch in three dimensions. Itegular if it is smooth and its
tangent plane at every poigtis spanned by the two partial derivatives ando,. In other

words,o (u, v) should be smooth ansl,, x o, should be non-zero everywhere.
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The unit normal to the surfaceis = %. Thefirst fundamental fornof o is defined

asFEdu® + 2Fdudv + Gdv?, where
r=0¢, 0, F=0, 0, G=o0, 0, (3.4)
Denote bys the arc length of a curve on the surface patch. We have
ds* = Edu® 4+ 2Fdudv + Gdv*. (3.5)

Thefirst fundamental formelates the change in arc length to the corresponding clsangjee
curvilinear coordinates. Theecond fundamental forimdefined ad.du? + 2M dudv + N dv?,

where

L=oy, n, M=0c,-n N=0,: n. (3.6)

This expression is just a convenient way of keeping track,a¥/, and V.
A compact representation of the two fundamental forms caapithe following two sym-

metric matrices:

E F

Fr = , (3.7)
F G
L M

Fir = . (3.8)
M N

Denote byu an unit tangent vector af. The normal section aj in the w direction is
the intersection of the surface with a plane containingnd the surface normat. This
intersection is a curve on the surface. The correspondingatiire atq is defined as the
normal curvatures, (u). The maximum and minimum values of the normal curvatyreu)
are the twaprincipal curvaturess; andx, at the pointg. The geometric interpretation is that
they represent the maximum and minimum rates of change imgep when passing through
g at unit speed on the patch.

As far as the computation is concerned, the principal cureatare eigenvalues e%

They.are.achieved.in.twoe orthogonal directions. These tines, denoted by unit vectots
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andt,, are referred to as th@incipal vectorswhere the indices are chosen so that ¢ x t,.

The principal vectors are linear combinationsoqf ando,,, which span the tangent plane at
q:

ty = &Gout+moy, (3.9)

t, = &oy+mo,. (3.10)
Here (&, m1)T and (&, 1,)T are the eigenvectors o”f';lj-}] corresponding ta:; andk,, re-

spectively. The three vectors, t;, andt, define theDarboux frameat the pointg as shown

in Figure 3.2.

Figure 3.2 Darboux frame.

The normal curvature at in the directionu = cosft, + sinft, is
kin (1) = k10520 + Kosin?6. (3.11)

If the normal curvature:,, (u) is constant on all unit tangent vectors, the pajnis called
umbilic. In this case, geometric variation is the same in every taindgection. Any two
orthogonal directions on the tangent plane can be selestédamdt,. If g is not a umbilic
point, which means; # k,, there are exactly two principal directions and they areagyonal.

The Gaussiarandmean curvatureare respectively the determinant and half the trace of

the matrixZi:
LN — M?
Kzﬁl'ﬁgzm, (312)
K1+ Ko 1 EN—QFM+GL
H = =5 G T (3.13)
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The Gaussian curvatur&eeps unchanged when a surface is reparametrized. In cismpar
themean curvaturesither stays the same or changes sign in this situation. faars flat if
its Gaussian curvatures zero, and minimal if itsnean curvaturés zero.

A curve on the patch is calledlme of curvatureif its tangent is in a principal direction
everywhere. The patch mthogonalif ' = 0 everywhere. It irincipal if ' = M = 0
everywhere. In other words, a principal patch is paramadredong the two lines of curvature,
one in each principal direction. On such a patch, the prai@prvatures are simply; = %

andky = % respectively, and the corresponding principal vectoes ar % andt, = 2z,

3l

On a principal patch, defining

2
A =0, 0,

and

2
B =0y ' Oy,

then we have

ds? = Adu® + Bdv?.

The quantitiesA and B are called_amé coefficients or measure numhers

3.3 Differentiating Surface Invariants
Next, we derive derivatives of the principal curvatures pridcipal vectors.

3.3.1 Differentiation of Principal Curvatures

The principal curvatures can be expressed in terms of thesssmuand mean curvatures

(choosingx; > k») as

ki = H+VH?-K, (3.14)
ke = H—VH?-K. (3.15)
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To obtain the partial derivatives af; and x, with respect tou andv from the above
equations, we first differentiate the fundamental form toehts £, F, GG, L, M, N defined
in (3.4) and (3.6).

Eu = 2Uuu * Oy,
Ev = 204 - Oy,
Fu = Oyy Oy + Oy Oy,
Fv = Oy Oyt Oy Oyy,
Gu = 204 Oy,
G, = 20, 0,.

The partial derivatives of the unit normalcan be obtained as follows (66, p. 139).

n, = ao,+ bo,,
n, = co,+do,.
where
a c 1 GL—-—FM GM —-FN
Rk ey
b d EM —-FL EN-FM
Then we have:
L, = Oy N+ 0y Ny,
Ly, = 0w N+ 0y Ny,
M, = Ouw N+ 0w Ny,
M, = Ouw N+ Oy Ny,
Ny = Ouww N+ 0y Ny,
Ny, = Oppp N+ Oy - Ny

he-parti ivatives ok and H are then computed according to (3.12) and (3.13).
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3.3.2 Coefficients of Principal Vectors

Next, we derive the four coefficien{s, 1, &2, 12 in (3.9) and (3.10) as well as their partial
derivatives with respect to andv. Since the principal curvatures, i = 1,2, are eigenvalues

of the matrix; ' F;;, we have

0 = det(]:[] — lii:F[)
= (L—rE)- (N - rG) — (M — 5;F)*. (3.16)
There are two cases: (4)— x;£E = N — k;G =0for: =1or 2, and (b) eithel. — x;E # 0
or N — k;G # 0 for bothi = 1 andi = 2.
In case ()M — k;F = 0 by (3.16). SaF;; — x;F; =0, i.e.,

Fi ' Fir = kila,

wherel, is the2 x 2 identity matrix. The two eigenvalues & ~F;;, namely,x; ands,,

must be equal. Any tangent vector is a principal vector. We le

t, Nk with (771) (O by (3.9).

The other principal vectar, = &0, + 120, IS orthogonal tat;. So

(eoy +1m00,) -0, =0, e, &E+mnF =0. (3.17)

To determing; andr,, we need to use one more constramt: t, = 1, which is rewritten as
follows,

E& +2F &y + G = 1. (3.18)

Substituting (3.17) into (3.18) yields

m | and =ty e (3.19)
2= E(EC - F2) =BG — R '

In case (b)L — x;E # 0or N — k;G # 0 for bothi = 1, 2. Fori = 1, 2, we know that

(Fir — k:Fr) (5) = 0. (3.20)

)
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Equation (3.20) expands into four scalar equations acegrii (3.7) and (3.8) :

(L —riE)§ + (M — ki F)n; = 0, (3.21)

Three subcases arise for eaalalue.

(b1) L —k;E =0butN — k;G # 0. It follows from equation (3.16) that/ — «x; F' = 0. Thus
equation (3.22) gives ug = 0. & has an exponent 2, i.&,,- t; = E£? = 1, we obtain
& = j:%E.

(b2) L — Kk;E # 0but N — k;G = 0. This is the symmetric case of (b1). The coefficients are

(b3) L — k;F # 0andN — k;G # 0. From equation (3.21) we have

M—IiiF

ST

(3.23)

Substitution of the above into (3.18) yields a quadraticagigm with the solution

L—rE
=+ - : 24
T \/EN —9FM + LG — 2r;(EG — F2) (3.24)
In all expressions of; and;, the signs are chosen such thak t, = n.
The gradientsv¢; = (%, %) and Vi, = (2%, 2%), 4 = 1,2, are obtained by differ-
entiating appropriate forms @ and, that hold for all points in some neighborhood (not

necessarily the ones at the point).

3.3.3 Directional Derivatives over Principal Vectors

Let « be a scalar function defined over a surfade, v). Its partial derivative with respect

to the parametex can be written as follows:

0. — lm alo(u+ Au,v)) — a(o(u,v))
Au—0 Au
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L afo(w) o, Au) — alo(uv))
Au—0 Au
= ould], (3.25)

whereo ,[a] is defined as the directional derivative®fvith respect tar,,.
Using (3.9)—(3.10), all the derivatives with respect to pinecipal vectorg, t, in equa-

tions, repetitive or not, can be obtained. For instance,

tilo] = (100 +moy)al
= & -oufa]+m-oylal

= glau + oy by (325)

3.3.4 Covariant Derivatives of Principal Vectors

Let g be a point oro(u, v). The principal vectors aj aret, andt,. We first observe that

ty <a‘(u + Au, v)) —t(o(u,v))

—(t2)u = lim .
VE Au—0 Au VE
_ ta(g+ o, Au) —ta(q) 1
= im .
Au—0 Au \/E
t2 (a+ (0u/VE) - AwVE) — (a)
= lim
AuvVE—0 AuVE
~ lim ta(q + 1 - As) —ts(q)
As—0 As
def V. ts. (3.26)

Thecovariant derivativeV,, t, measures the rate of change of the principal vetitas a
unit-speed surface curve passes through the jgaimthet; direction.

Next, we have, foi, j =1, 2,

Viti = Veounot

= &Vaut]’ + mvgvtj

= &V, (&ou +n00) +0iVo, (0w +1j0). (3.27)
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The first summand in (3.27) is computed as follows:

&V, (fjo'u + Tb'ffv)
= f‘(a'u[fj] 0y + &V, 00+ O'U[nj] "0y T+ njvaua'v)

_ 3] o

a'q, + njaw) .

The first step above uses a fact about covariant derivatve$fb) = a[f] - b+ f - V,b.
The second step uses (3.25); namely, the directional deegaof a scalar along,, ando,,
respectively, are just its partial derivatives with regpgee andv. The same rule applies to the
covariant derivatives of a vector with respecttp ando,,. Similarly, we express the second
summand in equation (3.27) in terms of partial derivativéh wespect ta; andv. Merge the

resulting terms from the two summands:

o 9 on.
Vili = (g’i+ ‘a%) (€’ﬂ+ ’a%)a”

3.3.5 Partial Derivatives of Principal Vectors

Proposition 1. The following equations hold for partial derivatives of théngipal vectorst,

andt, on a principal patcho (u, v):

(t1), = (\/6) to, (3.29)
_ )
(t2)u = = (3.30)

Proof. Due to symmetry we need only prove one equation, say, (3.86).us express the
derivative(t,), in the Darboux frame defined kly, ¢,, andn. Differentiating the equation
t,-to = 1 with respect ta; immediately yieldst,),, -t = 0. Next, we differentiaté, - n = 0
with respect ta::

(t2)y M +ty-m, =0.
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Heren, is the derivative ofr along the principal direction;, = Hg_ZH’ and hence must be a
multiple oft,.> Therefore, the above equation impligs),, - n = 0.
Thus,(t,), has no component alortg or n. We need only determine its projection onto

t,. First, differentiater,, - o, = 0 with respect ta:, obtaining
Oy Oy = —0y + Oy (3.31)
Next, we differentiate, - t; = 0 with respect tau:

(tQ)u : tl = _t2 ' (tl)u

- R by (3.3
i y (3.31)

E

= , sincek = o, - o0,.

k1t; though the details are omitted.
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CHAPTER 4. MODELING DEFORMATIONS OF GENERAL
PARAMETRIC SHELLS GRASPED BY A ROBOT HAND

This chapter investigates shape modeling for shell-likeab that are grasped by a robot
hand. A shell is a thin body bounded by two curved surfacesselutistance (i.e., the shell
thickness) is very small in comparison with the other dini@ms The locus of points at equal
distances from the two bounding surfaces isniddle surfacef the shell.

Shells have been studied based on the geometry of their@sddiaces which are assumed
to be parametrized along the lines of curvature (80; 25; The expressions of extensional
and shear strains, and strain energy, though derived inah fiame at every point, are still
dependent on the specific parametrization rather than omefeic properties only. Such
parametrizations, while always existing locally, are véifficult, if not impossible, to derive
for most surfaces. Generalization of the theory to an atyitparametric shell is therefore
not immediate. The Green-Lagrange strain tensor of a shpikisented in general curvilinear
coordinates in (28; 67). However, the geometry of deforamais hidden in the heavy use of
covariant and contravariant tensors for strains.

The strain energy of a deformed shell depends on the geomwikeitsy middle surface and
its thickness, all prior to the deformation, as well as trgpldiicement field. In this chapter, we
will rewrite strains in terms of geometric invariants inding principal curvatures, principal
vectors, and the related directional and covariant deviesit

All shell-like objects addressed in this chapter satisg/fihllowing three assumptions:

1. They are physically linear but geometrically either &iner nonlinearPhysical linearity
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refers to that the elongations do not exceed the limit of pridpnality so the stress-
strain relation is governed by Hooke’s lakseometric nonlinearityefers to that the
angles of rotation are of a higher order than the elongatéon shears.Geometric

linearity refers to that they are of the same order.

2. They are considerdtbmogeneouandisotropig i.e., having the same elastic properties

in all directions.

3. Their middle surfaces are arbitrarily parametric or sorapimated.

4.1 Displacement Field of a Shell

As shown in Figure 4.1, denote loy(u, v) the middle surface of a thin shell with thickness
h before the deformation. The parametrization is regulaerigypointp in the shell is along
the normal direction of some poigton the middle surface; that i, = q + zn, wherez is

the signed distance frogto p.

post-deformation

middle surface
o(u,v)

pre-deformation

(@) (b)

Figure 4.1 Deformation of a shell. The popin the shell is along the direction
of the normaln at the pointg on the middle surfacep’ andq’ are
their displaced locations.
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The displacemeni(u, v) of ¢ = o (u,v) can be expressed in its Darboux frame:
O(u,v) = a(u,v)ty + B(u,v)ts + v(u,v)n. (4.1)

We call the vector field (u, v) thedisplacement fieldf the shell. After the deformation, the
new position ofg is
q =o' (u,v) =o(u,v) + d(u,v).
At the same time, from classical shell theory (56, p. 178 ,displacement gb contains

another term linear in the thickness

5(U7 U) + z gp(u) U) . (42)

The displaced positiop’ of the pointp may not be along the normal directiongf due to a

transverse shear straithat acts on the surface throughand parallel to the middle surface.
This type of strain tends to be much smaller than other types ghell and is often neglected
in classical shell theory (44; 80) under Kirchhoff’'s asstionu straight fibers normal to the

middle surface of a shell before the deformation will
1. remain straight after deformation;
2. do not change their lengths;
3. and remain normal to the middle surface after deformation

In this chapterwe adopt Kirchhoff’s assumption and do not consider trarsevehear

The linear elasticity theory is appropriate in the situatioat the deformation of a shell is
small. It assumes that the magnitudes of angles of rotabamotlexceed those of the elonga-
tions and shears. They are all sufficiently small when coegbtr unity. Under those assump-
tions, the squares and products of these terms are neglidfilhose terms are compared with

unity;they-canbe.dropped (55). The linear theory makes fierdhnce between the values of
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the magnitudes and positions of the areas on which the sintsgor both pre-deformation

and post-deformation states.

4.2 Small Deformation of a shell

Most of the literature (56; 80; 70; 25) on the linear elasgfitheory of shells have as-
sumed orthogonal curvilinear coordinates along the liiesiovature. Though in theory there
exists a local principal patch surrounding every point wittequal principal curvatures, most
surfaces (except simple surfaces such as planes, cyljrspdreres, etc.) do not assume such
a parametrization.

The exception, to our knowledge, is (28) in which generalitimear coordinates are used
in the study of plates and shells. Nevertheless, the geametuition behind the kinematics
of deformation is made invisible amidst its heavy use of cawve and contravariant tensors to
express strains and stresses. The forms of these tendiatestind on a specific parametriza-
tion rather than on just the shell geometry.

Section 4.2.1 first reviews some known results on deformatimd strain energy from the
linear shell theory. In Section 4.2.2, we will transformgbeesults to make them independent
of any specific parametrization, but rather dependent omgét invariants such as principal
curvatures and vectors. In the new formulation to be derigedmetric meaning of strains
will be more clearly understood. Section 4.2.4 will deseititow to compute strains and strain

energy on an arbitrarily parametrized shell using toolsfaifferential geometry?

4.2.1 Strains in a Principal Patch

Let the shell's middle surface(u,v) be a principal patch. Under a load, at the point

q on o (see Figure 4.1(b)) there exiektensional straing; ande,, which are the relative

1The theory is distinguished from the membrane theory whigdisiwith elongations but ignores shearing
and bending.
2The mathematical derivations in Sections 4.2.2 and 4.2r8 werformed by my thesis advisor Yan-Bin Jia.

www.manaraa.com



29

increases in lengths along the two principal directibnandt,, respectively. They are given

as (25, p. 219):

. Oy, (V E)v . _k

€1 = \/E + \/E_G 6 1/77 (43)
B WG

@ = JgtvEg * T (44)

where E/, F, G are the coefficients of the middle surface’s first fundamefman defined
in (3.4) andx; andk. are the two principal curvatures, all @t

There is also th-plane shear strai. As shown in Figure 4.1(b}, andt,, are the unit
tangents from normalizing the two partial derivatives @& thisplaced surface’, respectively.
These vectors are viewed as the “displaced locations” optimeipal vectors,; andt,. The
angle betweeit| andt, is no longerr/2, andw is the negative change fromy/2. We have

w = wy + wy, Where (25, p. 219)

o oa (VG
C{)l - \/E EG B? (4'5)
_ B B

The extensional and in-plane shear strains, athich is off the shell’s middle surface, will
also include some components due to the rotation of the naembBnder the assumption of
small deformation, we aligh, with t, and view in their common direction (see Figure 4.2).
Denote by¢, the amount of rotation of the normal' from n about thet, axis towardt;.
Similarly, let ¢, be the amount of rotation of the normal about theaxis towardt,. We

have (25, pp. 209-213)

o1 = —\Z%—oml, 4.7)
¢ = —}%—ﬂ@. (4.8)
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n n
n A n
Q @
t1< ' ' > t2
b1, L.t
tl' L

Figure 4.2 Rotation of the surface normal.

It is shown that the extensional strains pt= q + zn are

€ = €+ 2@, (4.9)

€9 = €2+ ZCQ, (410)
and the shearing strain at the point is
(:J:u.)—l-Z(Tl—FTQ), (411)

where the “curvature” and “torsion” terms (25, p. 219) are

G = (%“ + (\/\/5_(); - o, (4.12)
G = (% " (% 61, (4.13)
- (3%” - (\/\/S_(); - s (4.14)
Ty (%u — (\/\/EE__C); - 1. (4.15)

The geometric meanings of these terms will be revealed itid3et.2.2 after they are rewritten

into parametrization independent forms.

3py dropping all terms of ordélx, or hxy when compared to 1.
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Let e be the modulus of elasticity andthe Poisson’s constant of the shell material. We

let T = 71 + 7. Under Hooke’s law, the strain energy density is

1 —p

dU, = 6§+2uae2+é§+-—5—@%dv; (4.16)

—
2(1 = p?)
The strain energy can be obtained as follows.

U = /dU€
1%

_ € 2 A a o 1=
- m/‘/(el+2ueleg+62+Tw )dV

h
e 2 e 1—p.
= m/a/_g(e%—i—?,uelengeg—i-TwQ)dzds
e

1 —p
= m /U {h(e% + €5 + 2uer € + Tu)2>

W (o, L—p 5
+t 35 (Cl + G+ 206G + 57 )}\/EG dudv. (4.17)

The linear term irh above is due to extension and shear, while the cubic terneisaloending

and torsion.

4.2.2 Transformation based on Geometric Invariants

The strains (4.3)—(4.8), (4.12)—(4.15), and the strairrggnérmulation (4.17) are only
applicable to a middle surface which is parametrized alamgslof curvatures. In order to
expand the application domain, these terms need to be dieedréo arbitrary parametric
surfaces. Rewriting the strains in terms of geometric irras like principal curvatures and
vectors that are independent of any specific parametrizagi@n indispensable step in the
generalization. We will present this below.

The middle surface (u, v) of a shell remains to be parametrized along lines of cureatur

First, we rewrite the extensional strain (4.3) as follows:

a, = o,]a] by (3.25) (4.18)
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By the linearity of the directional derivative operator, vegvrite the first term in (4.3):

\/uE = \/%[a] = t1[a]. (4.19)

The termt; [o] does not depend on parametrization.

As far as the second summand in (4.3) is concerned, we first hav

(t2)u
=Vt by (3.26 4.20
\/E t1 L2 y ( ) ( )
Next, we make use of the following identity:
(VE),
ty), = ——=1t, 4.21
( 2) \/@ 1 ( )
of which the proof is given in Proposition 1 in Chapter 3. Conebequations (4.20) and
(4.21):
(VE),
ty, = Vut,, andhence
\/E_G 1 t1 L2
(VE),
Vi ts - t. 4.22
G t; L2 - 11 ( )
A second identity follows by symmetry:
(VG)a
=Vt - t,. 4.23
EC tol1 - T2 ( )

Substitutions of equations (4.19) and (4.22) into (4.3)ltas a formulation of the exten-

sional straire; independent of the parametrization:

€1 = tl[@] + (thtg : tl)ﬁ — K17
= tl[@] + (thtg : tl)ﬁ + (thn : tl)")/ (424)

The last step uses an equivalent definition of the principalature:x; def —-Vyn-t,.

4.2.3 Geometry of Strains

The first termt, [] in (4.24) denotes a strain component as a result of the chatgef

the displacement.in.thig.direction. As shown in Figure 4.3(a), we consider a peiim the
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neighborhood of; on some surface curve. This curve passes thr@ughunit speed in the
t, direction. After the deformation, these two points have mpasitionsr’ andq’. Denote

by ¢ andr} the corresponding projections @f andr’ ontot, (before the deformation). As
r approacheg along the curve, the geometric interpretationtdfy| is that it measures the

relative change in length betwegn’s projection onta; andq) .

tangent plane

(b)

Figure 4.3 Strain along a principal directionpartly due to (a) the change rate of
displacement in that direction and (b) displacement in titleogional
principal directiort, due to its rotation along .

In order to explain the second term in (4.24), we first obs#raéethe two principal vectors
have undergone some rotations frgno r. As shown in Figure 4.3(b), sinaeis very close
to q, it can be placed on thg axis. Projecting the displaced locatiogsand ' onto the
corresponding second principal axegyandr leads to two pointg’, andr,. The projection
of the covariant derivativé/, t, onto ¢, is equal to the cosine of the anglenormalized

over ||r — q||. Denote byw the projection of, ontot,. The displacement alongt, also
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contributes a component
|lw — 7| = ||r, — 7| cos = Fcosb

(normalized over|r — q||) to the straine;. This component is the second term in equa-
tion (4.24).

Similarly, the third term in (4.24) is the part of the dispatenty alongn involved into
t, due to the change of the normalalongt;.

By the same derivation, parametrization independent fatiards can be achieved for

other strain components (4.4)—(4.15):

€2 = o8] + (Vi ti - ta)a+ (Vi,n - ta)y, (4.25)
wy = tofa] — (Vi1 - )5, (4.26)
we = t1[B] — (Vi ta - ), (4.27)
¢ = —ti[y]+ (Vyn - t)a, (4.28)
¢2 = —to[y] + (Vin - £)0, (4.29)
G = ti[r] + (Vi ta - 1), (4.30)
G2 = to[da] + (Vi1 - t2) o, (4.31)
71 = ta]d1] — (Vi ty - t2) . (4.32)
Ty = t1[pa] — (Vi ta - 1) (4.33)
: X
q% 7 -
| a |

Figure 4.4 Rotation of one principal vector toward anothetarrdeformation.
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The terme, in (4.25) has a similar geometric explanationecagn equation (4.24). Next,
we interpret the geometric meaningwafin (4.26). As shown in Figure 4.4, every point along
the principal directiort, in a local neighborhood is displaced in thedirection by a value
which is equal to that of the functiom (see (4.1)) at that point. After the deformation, the
projections of the new locations of these neighborhoodtpdorm a vectot,, in the original
tangent plane approximately. In essence, this new vectobeaconsidered as a result of a
rotation oft, during the deformation. Since tlhevalues of these points are usually different,
t, is unlikely perpendicular t@,. Subsequently, the change raté| gives out the rotation
of t, towardt, after the deformation. The second term in (4.26) represietemount of
rotation fromt, towardt;. This rotation is a result from the change in surface geometr
q along the directiort, and the displacement Therefore this amount has to be subtracted
from the first term, yielding exactly (4.26). By the same rewdsg, w, given by (4.27) is the
amount of rotation front, towardt,. Their sumw = w; + w», is the shearing in the tangent
plane.

Similarly, the rotation front; toward the normah after the deformation is the negation of
¢1, which is given in (4.28). Recall that no shearing happenkémiormalt,-n plane under
Kirchhoff's assumption. Subsequently, the rotation frentoward¢; must be¢; to ensure
that the two vectors remain perpendicular to each other #feedeformation. In the same
way, ¢, represents the rotation af towardt,.

The geometric meanings ¢f, (-, 71, andr, in (4.30)—(4.33) can be explained in a similar
way, though more complex. From differential geometry, wewrthat the derivative of a
rotation of the normah about some tangent direction is the normal curvature. Time {g,
referred to axhange in curvatureaccounts for the change rate of the anglealong the
principal directiont,, plus the effect of the anglg, due to the change af alongt,. The
term (; can be explained similarly. Togethe&y, and(, measure the bending of the surfaces.
The sumr = 7, + 7, referred to aghange in torsionmeasures the twisting of the surface

due to the deformation.
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In the strain energy integral (4.17), the area elemént; dudv now needs to be replaced
by v EG — F? dudv to be applied to a regular patch on which the two partial déikres are

not necessarily orthogonal, i.€7,# 0. Hence we have

e 1—u
[]E = m/g{h(E% +€§ +2,LL€1€2 + TU)2)+

h3 1—
o (gf + G4 2uC1Go + 5 a 72)}\/EG — F2 dudv, (4.34)

with all strains given in (4.24)—(4.33).

4.2.4 Strain Computation for a General Parametric Shell

Since all the strain terms are expressed in terms of geametdariants, we can compute
them on an arbitrary parametric shell using tools from d#feial geometry. From now on,
the middle surface (u,v) is not necessarily parametrized along the lines of curvatiice
compute the strains according to equations (4.24)—(4v88yeed to be able to evaluate the
directional derivatives of the principal curvatures x, with respect to the principal vectors
t, andt,, as well as the covariant derivatives,t;, i, j = 1,2 andi # j. All these derivatives
have been derived in Chapter 3.

Next, we derive the derivatives of the displacements. Rehatl the displacement is

described in the Darboux frame:
0 = aty + [ty + yn,

wheret, t,, andn are three orthogonal unit vectors. Therefore we have:

o = (S'tl,
6 = 5'1;27
v = d-n.

All the derivatives with respect to andv can then be obtained. For instance,

Oy = 6u't1+6't1u7
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ay, = 0y -t +06-1,,
Bu = 04 ta+0- 1y,
By = 0, -ta+0 - ty,
Yo = Oy-m—+0-n,,

Vo = 0, M+ -n,.

Similarly, the higher order derivatives can also be comgute

4.3 Large Deformation of a Shell

When a shell undergoes a large deformation, the linear elgstheory as presented in
Section 4.1 is no longer adequate. This is illustrated belsing the example of a rotation

about thez-axis through an anglé

i cos —sinf O T T
y | = | sinf cosf O y || vy
z 0 0 1 z z

No deformation happens, hence no strain alongattexis, as confirmed by the nonlinear

(5) (%) + (5)]

1
= cosf—1+ 5 [(cosd — 1)? + (sin 9)2}

theory (65, p. 13):

or’
€, = —

L
or 2

= 0.

However, the linear elasticity theory yields a strain

/
€r = 8_x = cosf — 1, (4.35)
ox

which is negligible only when the rotation anglés small.
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As before,o (u,v) is the middle surface of a thin shell, in a regular paramation. \We
look at a pointg = o(u,v) in the middle surface with the displacement field (4.1) in the
Darboux frame defined by the two principal vectérsaandt,, and the normah at the point.

A pointp = g + zn in the shell, which projects tg, has the displacement given as (4.2).

Under Kirchhoff’'s assumption, at the relative elongations; of a fiber along the normal

n, and shears,3 ands,3, respectively, in the;-n andt,-n planes, are zero; namely,
€33 = €13 = €23 = 0. (4.36)

Next, we present the nonlinear shell theory (55, pp. 186)%1&%& transform the related
terms into expressions in terms of geometric invariantstAive have the relative elongations

of infinitesimal line elements starting qtas:

1

Enn = €1+ 5(53 + wf + Qﬁ)a (4.37)
1

€20 = €2+ 5(53 + W% + ¢%)a (4.38)

Next, the shear in the tangent plane spannet} andt, is
€12 = W1 + wy + €Wy + €wi + P102. (4.39)

In (4.37)—(4.39)¢;, wi, ¢i, @ = 1,2, are given in (4.24)—(4.29). Note the appearance of non-
linear (quadratic) terms in equations (4.37)—(4.39). Tthairsse;;, ¢, 7 = 1,2, 3, symmetric in
the indices, together constitute the Green-Lagrangendieasor of a shell (67, pp. 201-202).

The rate of displacement in (4.2) along the normalt g is determined as follows:

U = ¢1(1+e) — powr, (4.40)
o = ¢l + 1) — Prwa, (4.41)
X = €+t €t+ 6 —wws. (4.42)

The relative elongations and sheapdpff the middle surface) are affected by the second

order-changes-in.geometry at its projectipin the middle surface. They are characterized
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by six “curvature” terms which are rewritten in termsift, andn in the same way as in
Section 4.2.2:

ki = G+ (Vute-t)e + (Vyn-t)x,

Koo = to[p] + (Vity - 82)0 + (Vi,n - to)x,

k12 = tifp] — (Vyts - t)0,

Kor = 0] — (Vi - ta)p,

ki3 = tilx] — (Vyn-t)0,

Koz = ta[x] — (Vn - ta)e.
Among them; andks, describe the changes in curvature aléngndt,, respectively
andk,; together describe the twist of the middle surface in theg¢ahglane; and3 andxo;
describe the twists out of the tangent plane.

The six termss;; form the following three parameters that together chareet¢he varia-

tions of the curvatures of the middle surface along the ai@irections:
G1 = (14 €k +wikia — P1k13, (4.43)
G2 = (1+ )k + wrka — Pakas, (4.44)
G2 = (I+e)ka + (1 + )k
+wak1 + wikea — Pak13 — P1Kas. (4.45)

Finally, we have the relative tangential elongations arehshtp in terms of those aj in

the middle surface:

Enn = en + 2, (4.46)
€99 = €22+ 2(22, (4.47)
€12 = €12+ 2(12. (4.48)

Their derivation neglects terms irf, as well as products of with the principal curvatures

—thn -1 and—Vtzn - to.
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In the case of a small deformation, we neglect elongatiodssaears compared to unity,
for instance,l + ¢; = 1in (4.43), as well as their products (also separately wittvature

terms) such as,w, in (4.39). Equations (4.46)—(4.48) then reduce to

~

€11 = €1+ ZK11,
€92 = €3+ ZKao,
12 = W+Z(I€12+l€21),

wherew = w; + wy. These equations are essentially the same as (4.9)—(4.14¢ iinear
elasticity theory of shells, with;; corresponding t@;, x5 to 7, andks; to 7.

The strain energy of the shell has a similar form as (4.34hénlihear case:

e 1-—
V= g g [ {1 e s 15

h3 1—
+13 (Cfl + (3 + 20C11Con + T“gg)} VEG — F?dudv. (4.49)

4.4 Energy Minimization over a Subdivision-based Displacement Field

The displacement field(u, v) = (a, 3,7)T of the middle surface of a shell describes its
deformation completely. At the equilibrium state, the shaks minimum total potential en-
ergy (20, p. 260), which equals its strain energy (4.34) atq¥minus the potential of applied
loads. Applying calculus of variationg(u, v) must satisfy Euler’s (differential) equations. A
variational method (86) usually approximai#s:, v) as a linear combination of some basis
functions whose coefficients are determined via potentiaigy minimization.

Since the curvature terngs, (2, andr, or (11, (22, and(;, contain second order derivatives
of the displacement, to ensure finite bending energy, this fasctions interpolating (u, v)
have to be square integrable, and their first and secona-dedigatives should also be square
integrable. Loop’s subdivision scheme meets this requerdgr(®3). Recently, the shape func-
tions of subdivision surfaces have been used as finite elenasis functions in simulation of

thin shell deformations (12).
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(b)

Figure 4.5 (a) A regular patch with 12 control points definengurface element
which is described in (b) barycentric coordinatesndt.

A subdivision surface, piecewise polynomial, is contrdll®y a triangular mesh witim
vertices positioned at1, . .., x,, in the 3-D space. Every surface element corresponds to a
triangle on the mesh, and is determined by the locations bbmly its three vertices but also
the nine vertices in the immediate neighborhood. In Figuséad, the twelve vertices affecting
the shaded element are numbered with locatiesss respectively. A point in the element is
Zﬁl bi(s,t)x;, wheres andt are barycentric coordinates ranging over a unit triangde (s
Figure 4.5(b)){(s,t)|s € [0,1],¢ € [0,1 — s]}, andb;(s, t) are quartic polynomials called the

box spline basis function(@3). Their forms are listed as:

1
by = E<S4 + 25°t),
1 .
by = E(S4 + 25°w),
1
by = ﬁ<84 + 283w + 65t + 65*tw + 125*% + 65t°w + 65t + 27w + t1),
1
D= E<6$4 + 2455w + 245°w? + 8sw® + w? + 2453 + 60s%tw + 36stw?
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+ 6tw® + 245%? + 36st7w + 12t2w? + 8st® + 6t3w + 1),

1

bs = E<S4 + 65°w + 125°w* + 6sw® + w* + 25°t + 65*tw + 6stw? + 2tw?),
1

be = —(2st® + 4
1

br = E<S4 + 65°w + 125%w* + 6sw® + w* + 85°t + 365 tw + 36stw?

+ 8tw?® + 245** + 60stw + 24t*w? + 245t + 24t%w + 6t),

1
by = ﬁ<84 + 85w + 245%w? + 24sw® + 6w* + 65°t + 365 tw + 60stw?
+ 24tw® + 125%% + 36st%w + 24t*w? + 65t + 8t3w + 1),
1
by = E(st?’ +w?),
1
b10 = E(%gw + t4),
1 ‘
by = E(25w3 + w* + 6stw? + 6tw® + 6s5t?w + 1262w?* + 2st> + 6t°w + t*),
1
b12 = E(w‘l + 2tw3),

wherew =1 —s —t.

The advantage of a subdivision surface is that it can easgessent an object of arbitrary
topology. The shape of a shell after a deformation usually$tpological similarity to that
before the deformation. This suggests us to approximatggfeemed middle surface as a sub-
division surfaces’(u, v) over a triangular mesh that discretizes the original seréa@:, v).*
The verticese; of o/(u,v) are at the positionsl(.o) = o(u;,v;) before the deformation; they
are later displaced by, = x; — wg‘”, respectively.

Every surface elemertt of o’ is parametrized with the two barycentric coordinatesd
t. To compute the strain ener@y in (4.34) or (4.49), we need to set up the correspondence
between(s, t) and the original paramete(s, v). The triangular mesh of’ induces a subdi-
vision of the domain of the original surface whose vertitesv;) are the parameter values

of the vertices ofr; of o’. In this domain subdivision, let’(uy, v;) be the 12 neighboring

4Subdividing the surface domain to approximate the dispiere field directly does not generate a good
result, as we have found out via simulation with severalem@$, because the topology of the displacement field
is.unknown beforehand.
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vertices ofo”’(u,v). Then
12
(u,0) = > bi(s, 1) (i, v (4.50)
k=1

The corresponding point on the original surface is

o(u,v) = 0(252'(8,15)(%7%))

12 12
S bi(s, e (uv) = > bi(s, ) (4.51)
=1 =1

Q

In the second step above, the functiefu, v) is locally approximated as linear over the small
domain region corresponding

The displacement of a point on the middle surface in its Daxdoame is, by (4.1),

(a, B,7) = (o“(u,v) - U(u,v))(tl,tg,n). (4.52)

Obtaining the Jacobian with entriés, 25, 22 and 2t from (4.51), the strain energy of the
shell can be integrated over each subdivision elememt.dfor accuracy, all needed geometric
invariants are nonetheless computed under the originahpetrizatioro .

If the middle surface of a shell is not parametric but eithreefform or described by
an implicit equation, the subdivision surfaeé(u,v) for the deformed shape is subtended
by a triangular mesh over the shell’s 3-D range data befaged#tformation. Essentially,
the original middle surface is approximated &y with the vertices at their pre-deformation
positionsz”.

Whether the shell is parametric or not, ietbe the number of vertices of the subdivision
surfaces’. The deformed shape is characterized by the column vexter (67,...,6.)7,

which consists oBm coordinate variables. After the deformation, the vertiaes atx; =

2" + 68, forl <i<m.
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4.4.1 Stiffness Matrix

In the case of a small deformation, the system is linearfiotig the linear elasticity theory

and can be easily solved. We rewrite the strain enéigy (4.34) into a matrix form:
U. = ATK,A, (4.53)

where K is the (symmetric) stiffness matrix constructed as followssume there aré/,
elements in the triangular control meshef Let S, denote theith element. Number the
neighboring vertices locally so they are®t, x-, - - -, 12, respectively. The displacement
field (o, 3,7)" of Sy, is decided byd7, ..., d1,, whered; = (J3i—1)11, O3i—1)12: 03ii-1)13) " »
for 1 < < 12. Each ofa, 3, v is a linear combination of thess variables.

Next, we illustrate over the integral summand involvirfgin (4.34). By its definition
(4.24),¢, is still a linear combination of thes# variables, saye; = Zfﬁl Nio;. Lett, =
(b1, t1ys t12)T, B = (taw, tay, t2.)T, @ndn = (n,,n,, n,)*. The forms ofNN;s are given as, for

1 <0 <12,

N3ii—1y41 = tl[b'tlm] + (Vi ty - t1)bito, + (Viym - t)bin,

8t Otiy ob; Ot
= 51 tu + &b L M——tiz + 7715@'—1
ov ov

+(Vt1t2 . tl)bz’th — K1bing,

Ng(i_1)+2 = tl[b'tly] + (thtg . tl)bitzy + (thn . tl)bmy

ot ob; ot
= 51 tly +&1b; 1y +timgs tiy + 77151'6—21}‘1/

+(Vity - tl)bz‘to — K1biny,
N3i—1)43 = tl[b'tlz] + (Vi ty - t1)bita. + (Vyn - t1)bin,
at ; ob; Ot1.
= 51 7512 + &b AL m——t1. + nlbi_l
ov ov

+(Vity - tl)bitQZ — kibin,,

whereb;s are the subdivision basis functions, a@gd, 7;) is from (3.9). From (4.34), the
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element stiffness matrik i is a36 x 36 matrix (symmetric) with entries

& e
Ki—_ % [ WNN,dA. 4.54
Ip QO—uﬂLk Ny A #.59)

Similarly, we construck, K12, K«° K¢ K%, K9 andK™ . The stiffness matrix for

the element is

Ks = K94+ K%+ K9 4 K

k

+ K9+ KS 4 K9 4 K7 (4.55)

Now we need to assemble€s, into K (3m x 3m matrix). The local indices of the vertices
in K, are converted to the global indices. After adding rows ardroas of zeros for all
vertices not appearing ifiy, K, is expanded to a ne&m x 3m matrix K . The global

stiffness matrix sums up all element contributions:
Ne
K, =) K. (4.56)
k=1

4.4.2 Minimization of Potential Energy

Denote byg(u,v) the load field, which does potential
U, = / q(u,v) - 8(u,v)dA = ATQ, (4.57)
where( is the vector of all nodal forces. The total potential enesfg shell is
U=U.-U,=ATK,A - ATQ, (4.58)

where the strain enerdy. is given in (4.53).
To minimizeU, a system of equations iA can be derived by differentiating (4.58) with

respect to the vector and setting all partial derivativezsio:

2K,A = Q. (4.59)
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The linear system (4.59) can be easily solved using Gaus$ilmmation or a sparse matrix
method.

A large deformation is governed by the nonlinear elastithgory. The strain energy.
in (4.49) no longer takes the quadratic foty? i, A, but rather a quartic form. Minimization
of the total potential energy/. — U, is done iteratively. In the case of point contacts, a
conical initial displacement field is placed around eachacirpoint. Minimization over the
radius of the deformed region sets the initial valueXf The conjugate gradient method
is employed to improve o\, with the gradients evaluated numerically. Interpolation
the local neighborhood improves the computational effiggerOn a Dell Optiplex GX745
computer with 2.66GHz CPU and 3.00GB of RAM, it usually takesesal minutes to obtain

the solution compared with several seconds in the linea.cas

4.4.3 Boundary Conditions

Boundary conditions are handled in the same way as descril§@d) — the boundary dis-
placements are determined only by vertices at most one edge (@cluding added artificial
vertices just outside the domain). This is because of thal kpport within the subdivision
scheme in Figure 4.5. For every boundary edge, one artifieréx is introduced. As shown
in Figure 5.4, vertex 4 is artificial and positionedeat = o5 + o3 — o1, Whereo ¢, o5, and
o3 are the positions of the vertices 1, 2, and 3 which form a glen Vertex 4 affects the
geometry of the surface element which corresponds to thedgie. Under the clamped condi-
tion (displacements and rotations fixed), the displacesnafithe vertices on the boundary and
their adjacent vertices, inside or outside, must be zeraletthe simply supported condition
(displacements fixed and rotations free), the displacesnainthe vertices on the boundary
must be zero, while those of the adjacent vertices insidecammside the boundary must be

opposite to each other.
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artificial vertex 3

Figure 4.6 Clamped boundary conditiob, = 4, = d3 = &, = 0; simply
supported boundary conditiod; = d3 = 0, 64 = —9;.

4.5 Simulation

By default (except where specified otherwise), the metritesyss used in our simulation
and experiment. For instance, the unit of Young's moduludaswvhile the unit of length is
meter. First, simulation tests under linear elasticity@meducted on a couple of bench mark
problems, and the results are compared with their analygimations® These problems in

mechanics were designed to provide strict tests to dealamithplex stress states.

4.5.1 Square Plate

The first bench mark problem involves a square plate undéonmioad of gravity. Here,
the effect of bending dominates those of elongation andrstgeads shown in Figure 4.7, the
plate’s boundary is clamped during the deformation. Listedhe right are the values of the
plate’s lengthZ, thicknessh, Young's modulus?, and Poisson’s ratip.

The maximum displacement at the center of the plate,is ~ 0.1376 according to the
analytical solution (80, p. 202), which is in the form of ayjshometric series. Figure 4.8 plots
the computed maximum displacements normalized aygf against the numbers of degrees

of freedom. Note that every vertex in the control mesh hasetliegrees of freedom. The

SClosed-form solutions rarely exist for general thin shetitgems.
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w=0.3
p=1.0

D
Figure 4.7 Plate under gravitational load and clamped dbdlomdary.

curve plot approaches the analytical vatue.
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Figure 4.8 Convergence of the maximum displacement for taekd plate in
Figure 4.7. The number of degrees of freedom equals thresstine
number of vertices.

The geometry, load, and boundary condition are all symmetrithe example. The
Young’'s modulus and the load represent only a scaling faatolr do not affect the overall

deformed shape. In Figure 4.9, the lgat scaled 200 times in order to illustrate the global

5The analytical solution considers bending only, whereasfaumulation also incorporates in-plane exten-
sion, shearing and torsion, and is thus more realistic.
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deformed shape. The added artificial vertices are drawrdin re

Figure 4.9 Calculated deformed shape (deflection scaledhéclamped plate
(artificial vertices marked red) in Figure 4.7.

4.5.2 Clamped Cylindrical Shell Panel

Next, we consider a cylindrical shell panel with the follogi geometric and material

parameters and subjected to uniformly distributed trarsgvénormal to the surface) load
a = 0.1rad, R =100in.,

a = 20in., h = 0.125in.,
E = 0.45 x 10°psi, pw=10.3, p = 0.04psi.

As shown in Figure 4.10, this shell is clamped at its boundary

Figure 4.10 Clamped cylindrical shell panel under uniforamgervers loads.
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The vertical displacement at the center of the shellid4 x 10~2in. according to (59).
Figure 4.11 plots the computed maximum displacements ria@dzover the reference value

against the numbers of degrees of freedom. The curve agmsdioe reference value.

1.4 T T T T T T
12 X 1
1

0.8 1

0.6 d

04 1

Normalized maximum displacement

0.2 1

0 1000 2000 3000 4000 5000 6000
Number of degrees of freedom

Figure 4.11 Convergence of the maximum displacement for lHraped cylin-
drical shell panel in Figure. 4.10.

4.5.3 Comparison with Commercial Packages

Shell elements in commercial packages usually fall into tategories: degenerated 3D
solid elements and elements based on thick shell theorspe¢ally the Reissner-Mindlin
theory (39)).

A shell may be approximated as a collection of degeneratesiddd elements, which are
simple to formulate because their strains are approximaté€tartesian coordinates. Mean-
while, analysis of general curved shells uses curvilineardinates. Though this increases
the complexity of derivation, the use of curvilinear cooiaties provides increased accuracy,
and is thus more preferable.

The Reissner-Mindlin theory allows for shearing throughtbwet thickness of a shell, and
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best models thick shells (38). It requir€8 interpolation only, simplifying the underlying
basis functions, and is thus easy to implement. Howeveltahaoes not perform well in thin
shell analysis because of shear and membrane locking.

We will compare our method with the use of shell elements SBEh The element
S3 is from the commercial softwa®BAQUSand based on the thick shell theory. Served
as general-purpose shell elemenABAQUS it is widely used in industry for both thin and
thick shells. The element T6 is a degenerated 3D solid elefran the SHELL93 library of
another commercial packagéNSYS

Our performance criterion is accuracy in terms of the totamhber of degrees of freedom,
which is standard in the FEM field. Here we use a well-knowrchanark problem: a cylinder
with rigid end diaphragms subjected to opposing normal tpoiads through its center (see
Figure 4.12). The radius of the cylinder i = 300.0. This problem tests the ability to
model deformation caused by bending and membrane strédsesnalytical solution yields
a displacement of .8248 x 10~ under the load of" = 1 (67, p. 217). The results of using

elements S3 and T6 are from (39).

2Lz L = 600.0
R = 300.0
E=3.0-10°
w=0.3
F =10

’> L/2——L/2 %

Figure 4.12 Pinched cylinder.

The convergence of our method to the analytical solutiomn@ve in Figure 4.13, along

with those ofABAQUSandANSYS The vertical axis represents the deflection at the point
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Figure 4.13 Convergence of the displacement under loaddqgitiched cylinder
in Figure 4.12.

of contact normalized over the analytical displacemeniezallhe normalized maximum dis-
placement converges toas the number of degrees of freedom increases, which meains th
the solutions converge to the analytical value.

To compare the rates of convergence of the three methodsiadbgn the number of
degrees of freedom in a finite element mesh, and- llye relative error. The relationship
between- andn is perhaps best illustrated by plottihgz(r) againstiog(n). If » = n?, then
log(r) = plog(n), so the relationship betweéog(r) andlog(n) is linear with the slope.
Therefore, the rate of convergence may be conveniently mnedsy the slope@. As shown
in Figure 4.14, this slope of our method is approximate; which means the relative error
decays roughly at the rate gi In other words, the errar decreases by a factor dfwith
every doubling of the number of degrees of freedonin comparison, the relative errors of
both S3 and T6 decay roughly at the ratekoﬂ'he convergence rate of our method is an order

of magnitude higher than those ABAQUSandANSYS

"Although both S3 and T6 converge monotonically to the refeeesolution as reported in (39), T6 does so
more slowly due to severe membrane locking.
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Figure 4.14 Rates of convergence.

4.5.4 Algebraic Surface

Simulation test under linear elasticity is also conductedanonkey saddle. It is worthy
of note that classical shell theory does not directly applyhie shape which does not have
a known parametrization along the lines of curvature. Thenbary condition requires that
its edge is clamped during the deformation. The result geedrby our method is shown in
Figure 4.15. General mathematical surfaces, not easilyefeddising the classical theory, are

well in the application range of our method.

4.6 Experiment

The experimental setup (shown in Figure 4.16) includes arpA@obra 600 manipulator,
a three-fingered BarrettHand, and a NextEngine’s desktops8adner (accuracy 0.127mm).
Every finger of the BarrettHand has a strain gauge sensor teasumes contact force. To

model point contaét a pin is mounted on each of the two grasping fingers. A tritargu

8assumed between an object and a BarrettHand finger in thigezha

www.manaraa.com



54

x® — 3xy? = 50002

il
r[l%? f

0/

1
il i (x,y) (= [—005,005]

i
7

x[—0.05, 0.05]

h =0.001
E=5.0-10°
w=>0
F=1.0

Figure 4.15 Deformations of a monkey saddle. The maximuiplaiement un-
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Figure 4.16 Experimental setup with a tennis ball.
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mesh model of a deformed surface due to finger contact is getkby the scanner. We
measure the modeling accuracy by matching the deformedciffom computation against
the corresponding mesh model and averaging the distanoestfre mesh vertices to the

deformed surfac@.

4.6.1 Tennis Ball — Linear vs. Nonlinear Elasticities

For comparison, we have conducted an experiment on a tealhggréasped at antipodal po-
sitions by the BarrettHand (see Figure 4.16). The rubbehaallan outer diameter 65.0mm
and thickness o2.5mm. The Young's modulus of the rubber is approximated®a, and
its Poisson’s ratio approximated 8$. Two subdivision-based displacement fields, one for
each finger contact, are used. Each field is defined o¥&mnan x 45mm patch, which is large
enough to describe the deformed area based on our observatio

The results are described in Table 4.1. In the table, eacltoomesponds to one instance
of deformation. The first column in the table lists the forgerged by each finger. The second
column (consisting of two subcolumns) lists the deformealpsls produced by the scanner.
The third and fourth columns present the correspondingrdeftions computed according to
the nonlinear and linear elasticity theories, respeadtivel

From the table, the nonlinear modeling results have smalters than the linear modeling
results in three out of four rows, all corresponding to ladgéormations. In the first row, the
two simulation results have comparable errors, which sstggbat the deformation is within
the range of linear elasticity. Starting from the second, it two methods generate shapes
that are visibly different from each other. In the secondanse, the shape generated by the
nonlinear method has an obvious dent comparable to the ottfeeaeal shape shown to the

left, whereas the shape by the linear method to the rightyhahdws any dent. We see that the

SWe select a small underformed area on the computed surfaobdgyvation. Pick a vertex from the area,
then place it at a vertex on the scanned mesh model. Aligntibeinals, and rotate the small area to find the best
match. Iterating over all vertices of the scanned mesh meilalegister the computed shape after deformation
onto the scanned shape.
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scanned deformation nonlinear deformation linear deformation
force measured average average
shape max disp. shape error shape error
(N) (mm) (mm) (mm)
10.63 % 2.56 0.31 0.30
16.50 ’ 6.05 0.62 0.85
20.37 “ 9.12 0.81 2.0
21.48 é 10.27 0.65 2.37

Table 4.1 Comparisons between linear and nonlinear def@mnsabn a tennis
ball.
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larger the force, the bigger the error of linear deformatibime error of nonlinear deformation
does not increase with the force.

Grasping causes deformations in the regions around thaatomlile the rest of the surface
hardly deforms. Figure 4.17 shows the deformed regionsewiie finger force o21.48N,
superposed onto the scanned undeformed model of the tealhig be figure corresponds to
the fourth instance in Table 4.1. The red curves, one at fhand the other at the bottom, mark
the borders of these deformed regions. The measured maxdigptacement 0of0.27mm is
achieved at two marked points. Due to symmetry, we only dispthe top deformed area.
We see that the two antipodal contact points move closerruhdeorce exerted by the two
fingers. The scanned deformations on the tennis ball andathinear results are within 7%

of each other from the fourth instance in Table 4.1.

Max deformation points

Figure 4.17 Deformed tennis ball under grasping. The pamt¢entact with the
fingers have maximum displacementsl0f27mm.

4.6.2 Rubber Duck — Free-form Object

The surface of a real object usually has two varying priricipavatures. To demonstrate
the ability to model free-form objects, we conduct an experit on a rubber duck toy. The
rubber has thicknessOmm. Its Young’s modulus is approximated BePa, and Poisson’s
ratio asl.5.

Figure 4.18 displays the rear and the front views of the daeéaol rubber duck under an
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antipodal grasp by the BarrettHand. The average modelimg &r6.58mm, which is within

7.4% of the scanned maximum displacenmeaémm.

Figure 4.18 Deformed rubber duck under an antipodal grash farce of
19.22N exerted by each finger. Two images show deformations from
a rear view (left) and a front view (right) with maximum diape-
ment (marked by dark points) 8f56mm and6.73mm, respectively.

4.7 Discussion

It is worth mentioning that our invariant-based formulatis mathematically equivalent
to the tensor-based one in (28). However, ours provides imaek clear geometric meanings
to shell strains, which are buried in the latter formulattture to its complicated symbolism of
tensor calculus.

In nonlinear modeling, an evolutionary algorithm rarelyris®due to its high dimensional
search space. The conjugate gradient method improves thputational efficiency with a
good initial guess obtained by interpolation over the loeaghborhood.

Compared to commercial packages, our method achieves a kbgyneergence rate. Faster
convergence rate implies a smaller number of mesh nodesdgwdhich in turn results in
faster running time. The invariant-based formulation o tbhell strains increase accuracy

and works with any parametrization. In contrast, commeéazkages either approximate
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strains in Cartesian coordinates, or use thick shell thednigwcould easily lead to shear and
membrane locking when applied to thin shells.

There are two sources of errors in the simulation. The firduis to the discrepancy be-
tween the original surface(u, v) and its “deformed” shape’(u, v) as a subdivision surface
under no deformation. This is because subdivision surfaaesot represent some curved
shapes exactly. The second source comes from modeling therdgion of the subdivision
surface, a process that simplifies a variational problenfiridfng a shape function satisfying
Euler’s equation) to that of determining a finite number ajr@es of freedom.

In our experiment, several factors have affected the mogelccuracy: occlusion to the
scanner, the scanner accuracy, and errors in the forcengsa(@iue to drifting of the zero points
of the BarrettHand’s strain gauge sensors). In the tennligkaériment, the air pressure inside
the ball also affects its deformation but is not modeled.

In a real situation, as the object deforms, the surface negicontact with the a robot
finger usually grows larger and the load distribution changélodeling is expected to im-
prove by considering area contacts and distributed loadsalling tactile array sensors on the

BarrettHand can dynamically estimate contact regions offirigertips.
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CHAPTER 5. TOWARD TWO-FINGER GRASPING OF
DEFORMABLE CURVE-LIKE OBJECTS

This chapter gives out a framework for two-finger squeezemnalysis. Two-finger
grasping is widely used due to its simplicity and robustnéxsint contacts with friction are
considered. Modeling is based on the nonlinear elastib#piy, which is more accurate for
large deformations compared with its linear counterparte €volution of contact friction
cones could be characterized under the minimum potenteaggrcriterion. Even if the two
fingers were not initially placed at “graspable” positiotige contact friction cones may have
rotated, resulting in an equilibrium grasp.

All objects addressed in this chapter are physically lifgaverned by Hooke’s law) but
geometrically either linear or nonlinear. In the latteresabe linear elasticity theory is no more
applicable. These objects are “closed curves” in the sdraetheir cross sections normal
to the tangential direction are very small. For simplicitye also assume that the physical

property in the width direction is isotropic.

5.1 Grasp Modeling

Under external loads, an elastic curved object exhibitsimipal behaviours: stretching
and bending. Its deformation model is a lower dimensionalayue to the thin shell model
in (36).

As shown in Figure 5.1, a thin curved object in our considendas swept out by a constant

cross section along a 2D closed cum/e:) referred to as theniddle curve The cross section
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has widthw and heighth. This is essentially a degenerated shell with only one datirig
dimension. To make physical sense, the curve is parametbigearc length. Computation

will easily carry over to arbitrary-speed curves.

initial shape

deformed shape

Figure 5.1 Deformation of a curved shape with rectangulassisection. The
pointp in the shape is along the direction of the normait the point
g on the middle curve. Poings’ andq’ are their displaced locations.

We follow Kirchhoff’'s assumption that lines initially nomhto the middle curve remain
straight after deformation, do not change their lengthd,ramain normal to the middle curve
of the deformed geometry.

Every pointp in the curved shape is along the normal direction of sometppia x(u)
on the middle curve. Let andn be the unit tangent and normal@trespectively. We have
p = q + yn, wherey is the signed distance fromp to p. The displacemend(u) of q is
described as

o0(u) = a(u)t + f(u)n. (5.1)

Under a load, at the point, the extensional strainis
e=tla]+(Vin-t)f=a —kp, (5.2)

wheret[a] is thedirectional derivativeof o with respect ta, andV,;n is thecovariant deriva-

tive which measures the rate of change of the normalong the middle curve at. Denote
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by ¢ the amount of rotation of the normal towardWe have
¢ =—tlfl+ (Vin-t)a = -0 — ka. (5.3)

The change in curvature, which accounts for the change féte anglep along the direction
t,is
(=t[¢] = —p" — Ka—kd. (5.4)
Denote byo the stress, and bythe strain at any point. Letbe the modulus of elasticity,

or Young’s modulus. We have

o = e(e+y),

e = e+yC.
Then the energy density is
1 1 )

The strain energy can be obtained as follows.

U = /dUE
1%

1
= —/e(e+yC)2wdyds
v

2

1 [t
= —ew/ (€ + y¢)*dyds

2 0 _%
= 1ew/L(h >+ h—3C2)ds (5.6)
I R AR A '

The component linear in the thicknessrepresents the extensional energy, and the cubic
component represents the bending energy. We cannot corssidiching only for a closed
curve because it will always result in change in curvaturel (@ending) unless the curve is a

line segment.
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It is well known that large deformations need to be descrimgthe nonlinear elasticity
theory. In the following, we present a geometrically exacdel expressed in terms of geo-
metric invariants. This model characterizes large straimbdeformations, and is transformed
from the nonlinear shell theory (79).

First, we have the relative elongation of an infinitesimaglelement starting at as:

E=c+ —( +¢7). (5.7)

DO | —

The following term characterizes the variation of the ctuva of the middle curve along the

tangential direction:

C=(1+¢€)(E[d] + (Vin - t)e) — o(tle] — (Vin - t)g). (5.8)
where

R11 = t[Qb] + (th : t)E
= —f"—Ka—2kd + KB,
K13 = t[e] — (th . t)qb

= o' —Kp-260 — K.
Replacing the corresponding terms in (4.49), the strainggnier
0, =2 /L(h‘2 + h3§2)d (5.9)
€ — 2€w ; £ 12 S. .

In case of a small deformation, equation (5.9) is esseyntilaél same to (5.6).

5.1.1 Discretization
Denote by, the potential of the external load. The total potential gyes
U=U.-U,.

The necessary condition for equilibrium is that the firstia@on §U is zero. Even in the

simplified.case,of purebending (i.e.= 0), calculus of variations will set up a sixth order
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differential equation that has little hope to be solved éyabiscretizing the object into finite
elements reduces the displacement from a continuous fieédddiscrete one, allowing the
application of numerical techniques to the potential epengimization.

The curvature terng;; in (5.9) has second order derivative of the displacementrdier
to guarantee finite potential energy, the basis functioosilshbe square integrable, and their
first and second-order derivatives should also be squaggrattle. The cubic B-spline basis
functions meet this requirement. It can be considered asdhaterpart of the subdivision
surface used in (79).

Letu € [0, 1], the four basis functions are

by = (—u®+3u®—3u+1)/6,
by = (3u®—6u*+4)/6,

by = (—3u®+3u*+3u+1)/6,
by = u’/6.

Figure 5.2 shows four consecutive points along the middteecu (). The position of any

p P, Ps Py
® @ ® ]

Figure 5.2 Discretization.

pointx(u) in the shade intervdp,, p;] can be represented in terms of the positions of these

two end points plus two neighboring control points as
x(u) = bip; + bapy + b3ps + bapy. (5.10)
Its displacement is then a linear combination of the dispiaentsy; of these control points:
O(u) = b161 + bads + b33 + b404. (5.11)

Obviously, any control point influences the dom&ir2.0, 2.0]. As shown in Figure 5.3,

the.second-order.derivative is continuous. In our impletatgon, both the geometry (5.10)

www.manaraa.com



65

and the displacement field (5.11) are discreized using tbelsie B-spline basis functions.

This leads to the so-calladoparametricfinite element, which is preferred in the FEM field.

1st derivative

2nd derivative

-2 -1 0 1 2

Figure 5.3 Concatenation of basis functions and the first arwbrsl-order
derivatives.

5.1.2 Nonlinear Energy Minimization

We rewrite the strain enerdy. in (5.9) into a matrix form:
U =ATK,A, (5.12)

whereA = (67,...,67)7, m is the number of control points, arid, is the stiffness matrix.
Assume there ard/’ elements in total. Les) denote the:th element. Number the neigh-
boring points locally so they are @, - - - , =4, respectively. The displacement figld, 3)” of
S, is decided bys | , ..., 8}, whered; = (Jai_1)11, 02i-1)+2) ", for 1 <i < 4. Botha and3
are linear combinations of theS8evariables.
Next, we illustrate the computation of the strain energ@)%ver the integral summand

involving ¢%,. Lett = (¢,,t,)", andn = (n,,n,)”. The forms ofN;s are given as, for
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ob; ot 1 1
Naii-j = (8_utq + bz‘a—;)(l T 56 §¢)
1 1

whereq is = or y whenj = 1,2, respectively, and;s are the basis functions. The element

stiffness matrixi<11 due to elongation is & x 8 matrix with entries

e2 1
K= Eew/s hN;N,ds. (5.13)
k

Similarly, we construct the element matrix due to bendiffg:. The stiffness matrix for the
elementis

Kg, = K + K1,

We can assembl& g, into K, by the standard procedure.

Denote byg(u) the load field, which has potential
L
U, = / q(u) - 6(u)ds = ATQ, (5.14)
0
where() is the vector of all nodal forces. The total potential enasgy
U=U—-U,=A"K,A - ATQ, (5.15)

where the strain enerdy, is given in (5.9). The entries dt; are functions of the unknown

displacements. The nonlinear minimizationlofs performed iteratively.

5.1.3 Boundary Condition

Boundary conditions are handled in a degenerate way compétteds thin shell counter-
part described in (12). For a boundary vertex, one artifi@aiex is introduced. The boundary
conditions are shown in Figure 5.4. Vertex 3 is artificial goditioned atc; = 2x, — x4,

wherex; andx, are the positions of the vertices 1 and 2.
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artificial point boundary
point
3 2 /
o S O

Figure 5.4 Displacement and rotation fixed, = d, = 43 = 0; displacement
fixed and rotation freej, = 0, 5 = —4;; displacement and rotation
free,20, = 63 + 6.

5.1.4 An Example

We proceed to show the effectiveness of our modeling tecteniy running a beam test
case (68, p. 741). This example involves a straight be&m=(3 - 10"psi) under uniformly
distributed load. The beam is clamped at both ends. It haghd0.0in, width 1.0in, and

height 1.0in. Figure 5.5 plots the maximum deflection against the loldshows that

1.4
+ nonlinear result

* linear result
o reference nonlinear result

Deflection (in)
o o o [
o ® e~ 0

o
N

o

0 2 a 6 8 10
Load (Ib/in)

Figure 5.5 Beam under distributed load and clamped at botb.end

geometrically exact model provides a higher accuracy fgeldoad:

IThe small difference between our nonlinear result and tfereace one is because the latter considers
bending only.
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5.2 Grasp

A grasp of a rigid object achieves force closure if it cangtan arbitrary external wrench
(force plus torque). Nguyen'’s (54) result on two-finger giag under point contacts in the
plane states that such a grasp is force-closure if the edBon of the two contact friction
cones contains the line segment connecting the two conbautisp

For deformable objectgrasp analysis and synthesis are no longer purely geonpetitic
lems Due to the highly nonlinear nature of the potential enemynf(5.15), determining the
deformed shape analytically is difficult, if not impossiblehis points us to start our investi-
gation numerically to predict whether a grasp can be perdrsuccessfully.

We assume that deformation happens instantaneously sathhth grasping forces do
not vary during the process, and no velocity of the object hak up. It is common to
ignore dynamics in modeling deformations using energyetiasethods. Here it allows us to
treat the grasping problem quasistatically. The outcoma gfasp on an object can then be
determined based on the post-deformation geometry of tleetodnd the original forces now
applied at the current boundary locations. More precisebre-deformation finger placement
is considered a grasp if the post-deformation finger placeémeuld be force-closure on a
rigid object with the same geometry as that of the deformegpesh

Specifically, we consider aqueeze grasg(u,v) with the two fingers positioned at
p = x(u) andg = x(v) on the curve. As shown in Figure 5.6, we positjat the origin and
q on the positivey-axis.

We assume that the bottom fingergatloes not move while the top finger squeezes the
curve towardp with a force of magnitudg. The effect will be equivalent to that generated by
moving the two fingers toward each other, but this constrairthe lower finger is needed here
for solution of the deformed shape. Note that the movemeititetop finger is constrained
to be on they-axis. Slips between the fingers and the curve can happengddeformation

when friction is not enough to prevent such motions from lesomg.
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Figure 5.6 Grasping computation model. The displacememhtatation at con-
tact pointp are fixed, while poing can move freely.

The applied squeeze force @tmust stay inside the friction cone. It points @tif the
line segmenipq is contained inside the cone. Otherwise it stays on the efigeeocone
which forms a smaller angle withg. The reaction force exerted by the top fingepatan be
computed after the deformation using FEM. It needs to steig@the friction cone at in the
post-deformation state for the grasp to be achieved.

Under the above formulation, the deformation of the curvel(thus the success of the
grasp) is completely determined by the magnityide force exerted by the upper finger. The
force magnitude igeasibleif it results in equilibrium of the curve in the post-defortioe
state.

Figure 5.7 shows the pre- and post-deformation states afspgr The computation of the

C DN

Figure 5.7 A deformable grasp.

post-deformation will be detailed in Section 5.2.1. Herenege that the line segment con-

necting the two contact points was initially outside the tiogtion cone, but becomes inside
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with the cone rotating counterclockwise under deformatidhe original finger placement

would not be a force-closure or even equilibrium grasp omia wbject of the same shape.

5.2.1 Grasp Testing

In Figure 5.8, the finger contact pointsandg are represented by pointg andg,. Points
P_1, P1, q_, andg, are in the immediate neighborhood of poipts and g,, respectively.

Based on the boundary condition handling method describ&eation 5.1.3, if we consider

-

q- 9 9,
P Py D

X

Figure 5.8 Points near the finger contact points.

P, as a boundary poinp_, andp, are artificial points to each other. Recall tdatepresents

the displacement at some point, we can formulate the contstias
6,1 - (50 - 61 == 0 (516)

They constrain the translation and rotation of the curvp ab that a unique FEM solution
exists. These constraints indeed form a minimum set of ¢iondi that must be satisfied in
two dimensions for the computation.

In Figure 5.9, pointp andgq are initial contact positions. After deformatiogp,moves to
q’'. Since the top finger can only move along tjxaxis toward the origin where the bottom
finger is placed, the new top contact position is pgintFinally, we check if the line segment

connectingp andq; lies inside the two corresponding friction cones. The giaguccessful

if so.
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pre-deformation shape

post-deformation shape

Figure 5.9 Quasi-static analysis. Poimisand g are initial contact positions,
whereas, pointp andg; are post-deformation ones.

5.2.2 Minimum Graspable Force Magnitude

Denote byG(u,v) a squeeze grasp as shown in Figure 5.6 with a finger placerhent a
locationsp = xz(u) andgq = x(v). A force of magnitudef exerted by the top finger is
feasibleif it results in a grasp. We can find a minimum force magnitygg such that the
curve can be grasped as follows. Start with an initial vahet double it at each step until the
grasp is achieved or will not be so. (Observe the rotatiorheftop contact friction cone to
determine it is toward the bottom contact friction cone.gWbssection to findf ;..

Table 5.1 lists three instances of grasping. The objectdragh241.6mm, width1.0mm,
and heightl.0mm. The value of its Young’s modulus i$0.0Pa. The value of the friction
coefficient is0.4. The first column in the table presents the initial configorad. The second
column lists the results after deformations. The third poitshows the minimum grasp force
magnitudes. In the table, each row corresponds to one oestafrgrasping.

To determine the influence of Young's modulus ., we recall that the deformation
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before grasping after grasping min grasping force
Q 0.5N

Table 5.1 Three grasps of a deformable object with two fingers

computation is to minimize

1

L h3
§€w/0 (het, + E(fl)ds —f-é.

If we change the value of Young’s modulus frerto ce, the problem is equivalent to minimize
1 L h? f
c (ﬁew/o (he?, + Effl)ds - 6) .
This implies that Young’s Modulus is a scaling factor. thenimum grasp force magnitude

for the valuece of Young’s Modulus is:f ;..

5.2.3 Prolonged Graspable Segment

A graspg(u,v) at locationse(u) andx(v) of a curvex is achievable if the set of feasible
grasping forces for the finger placement is nonempty. A darirderval [v;, v, of the curve
defines agraspable boundary segmefar p = x(u) if every graspG(u,v), v € [v,v,] is
achievable. For a rigid object, finding such an interval delseonly on local geometry, and

the.computationsis-straightforward.
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Figure 5.10 shows grasps of a deformable object and of a eiggdwith the same shape.
For the purpose of comparison, the deformable object ismiaws original shape and coin-
cides with the rigid object. One finger is fixedmin all the grasps. The att;ﬁdr represents the
segment of feasible locations where the top finger can beiposd to grasp the deformable
object, while the are;s, represents the segment for the rigid object. The graspagiment
is enlarged on the deformable object due to the change imcbgeometry. Generally, defor-

mation helps grasping.

Figure 5.10 Increased graspable segments. Thelfdm’s for the deformable
object, and the arg;s, is for the rigid one.

5.2.4 Disturbance

Robustness of a grasp of a deformable object has differericatipns than that of a rigid
one. In the latter case, every finger can exert a force of argninale inside the contact
friction cone for a non-empty null space of the grasp matkxuivalently, an arbitrary dis-
turbance force can be resisted. In contrast, the magnitdelisturbance force applied to a
grasped deformable object is bounded. Otherwise, the gviidpe broken.

To illustrate the above, consider an object grasped by tvgefs1 An exerted disturbance
force will result in reaction forces at the two finger congagthich can be determined after the
respective displacements are computed under, say, ttee Btesticity model. At each finger
contact, this reaction force is combined with the originasping force. The composite force

must lie inside the corresponding contact friction cone.
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Figure 5.11 Disturbance model. Poiptindq are the finger contacts. Pomt
is the disturbance contact.

As shown in Figure 5.11, an object is grasped at pgiraadqg. It has the same mechanical
properties as the one in Table 5.1. A disturbance force isaygplied at the pointv. It lies
inside the friction con€ at the point of application. Denote IBythe angle between the force
direction and one edge of the friction cones. Figure 5.12vshihat the composite finger
forces atp andq change their directions as the disturbance force varies e edge to the
other of the friction con€. During the change, the magnitude of the disturbance fdeyss

constant.

0.65

0.6

0.55

radian

0.5

0.45

0.4

0.35
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7
63 (radian)

Figure 5.12 Evolution of the finger force directiofis and #, to maintain the
grasp in reaction to the change in the direction of the distnce

force from0 to 0.76 (radian) while the magnitude of the disturbance
force stays constant.

In.Figure 5:13;.the.direction of the disturbance force isdiket its magnitude increases.
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Both 6, and6, will exceed2 tan~! (). The grasp is broken wheh first does so.

0.9r

0.8} 2tan ()

0.7f

radian

0.6

0.5¢

0.41

0 0.5 1 15 2
disturbance force magnitude (N)

Figure 5.13 Evolution of; and#, as a result of varying disturbance force mag-
nitude with the disturbance force’s direction unchanged.

5.3 Pure Bending of a Closed Curve

In real world, there is one physical response known as imsiteal bending such that the
membrane strain tends to vanish. In this section, solufiengure bending of a closed curve
will be presented.

As shown in Figure 5.14, a curve parametrized by arc leagghiixed ats = s;. A force
of magnitudef is exerted at = 0 in the positive direction of-axis. In this section, a calculus

of variation solution will be presented.

5.3.1 Pure Bending

If we consider bending only, extensional strain is zero ywbere
o — kB =0. (5.17)

We can immediately get

o = kKB,

2provided-by-my-thesis-advisor Yan-Bin Jia.
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Figure 5.14 A curve fixed at = s; and squeezed at= 0 toward the positive
direction ofz-axis.

/ - /
B Pl
n / / " 12
/BI/ — O(__i /I—KJ—O//—(K:—— K_)a/
K K2 K2 K2 K3
" ! 12 "
a K
— - _ 2_ 1 + 2 - Od/
p 2 ( 3 ,{2)
Substituting them into (5.4):
¢ = —ﬁ” Ko — ko'
12 " !/ "
o ! K / Koy «Q
= —IiOé—(Ii+2R3——2)Oé —1—2—2a —?

Obviously, ¢ is a function ofa and its first three derivatives. Subsequently, the strain

energy is

ewh?

L
U, = o0 / H(a,d,a" a™)ds,
0

whereH = (?, e is Young's modulusyw andh are the width and height of the curve’s cross
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In the case of a circle with radius k = } We have

/
« "

(=———ra".
r

5.3.2 Boundary Conditions
The points; does not move means that
a(sy) =0, (5.18)

and
B(s1) = 0. (5.19)

For bending only, equation (5.19) is equal to
a'(s1) = 0. (5.20)

At the same time, the post-deformation shape of the curveldtoe closed, therefore

a(0) = a(L), (5.21)

B(0) = B(L). (5.22)
Equation (5.22) also means:

a'(0) = o/(L). (5.23)

We also require that the curve after deformation has coatistiangent at = 0. Denote

by x(s) a unit-speed curve before the deformation. After the de#dion, it becomes

x(s) + ot + fn

with new tangent

(14+a —kf)t+ (ka+ B )n =t + (ka+ [ )n.
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Becausey, o and already have equal valuessat 0 ands = L, we only need to exert the

constraint3’(0) = §'(L). Differentiating equation (5.17) leads to
o — KB+ kB =0.
Subsequently, it is equivalent to exert the constraint
a"(0) =" (L).

5.3.3 Variational Solution

The load potential is

W = f(a(0)cosp — 5(0)sing) (5.24)
= a(0)cos —O/(O)sm
= fla(0)cosp — - sing) (5.25)

Then the potential energy is

L /
U= E/ H(a,d',a",a™)ds — f(a(0)cosp — o/ )sin¢). (5.26)
0 K
Since there are five constraints, we consider variation
Q€111 + E2M2 + €3N3 + €474 + €575 + 676,

wheren;s, forl < i < 6, are arbitrary functions. To satisfy the constraints, weinimave

5
J1(817€27837€47€5786) = mei(sl) = 07 (527)
=1
5
J2(€1,€2,83,€4,€5,86) = 261‘7];(81) = O, (528)
=1
5
J3(e1, €2, 85,24,85,26) = Y ei(ni(L) — mi(0)) = 0, (5.29)
=1
5
J4(51752783a54765>56) = Z@(?ﬂ(L) - 771{(0)) = 07 (530)
=1

www.manharaa.com



ot

J5(€17€27537€4755a€6 = Z€2 O)) =0. (531)

=1
Replace they related terms in (5.26) with + 11y + €2m2 + €373 + €44 + €575 + €676 LEL

5
U*<€17€27€37€47€5786) = U(817827837€47€57€6) + Z)\iJi(817827€37847857€6)' (532)
i=1

SinceU* achieves an extremum at = ¢ = ¢3 = ¢4 = €5 = g¢ = 0, its partial derivatives

with respect ta;s, for1 <+ < 6, must all vanish.

ou* . (F dH, d®H,. d*H.m
oz = E | (Ha- - l.
de; =0 /0 ( ds + ds? ds? s
~ dHa// dzHa/// ~ dHO/” ~
 B(Ho = S Sl B(Hor — S22l + B Hoo 1
sing ,

— feosgm;(0) + f

(0 ) 7i(0) + Mimi(s1) + Aaml(s1) + Asmil§ + Mamgl|§ + Al |5 -

Merging terms with the same factors leads to:

oU* . [ dH, d*H,. d*H.»
a_ lei= = F Ha — — i
Og; ei=0 /0 ( ds + ds? ds3 Jids
~ dHO/’ d2HO/”
+ (E(Ho = ===+ —5=) + Xa)milo — feoson:(0)
~ dH o )
+ (E(H@ d ) A4)777,|0 + f ( ) /(O>

+ (EHO/N + )\5)77;/|0 + Aimi(s1) + Aani(s1).

Then we easily set; = A, to eliminate the two terms involving:

oU* _ [k dH, d*H,. d*Hym
— ..o = F H, — _ :
Og; ei=0 /0 ( ds + ds? ds3 Jids
~ dHO/’ d2Ho¢’”
+ (B(Ho — ===+ —5=) + Xa)milg — feosm(0)
~ dHoc”’ Slngb
+ (E(Hyr — 7 )+ A+ f (0 ) 1;(0)

+ (EHqm + X1/ |L.

Theorem 2. Euler’s equation must be satisfie@: = H, — dg;’ + ddfg” _ ¢ Zg =0

Proof. We first show thaty = 0 ats # 0, L by contradiction. First, we assume tiat> 0

at.somes,witheut;lesing,generality. Then there exists some- 0 such thatG # 0 over
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(s —e,s + €). We can make small enough such tha{L ¢ (s — ¢, s + €). Now construct a
function, such thaty;(t) > 0 over (s — ¢, s + €) andn;(t) = 0 at other points if0, L|. By

contradiction it follows that
17:(0) = n:(L) = 1;(0) = ni(L) = n; (0) = mi (L) =

The partial derivative reduces to

oU* _ dH., d*H., d3H.
;=0 — E H, — - = - ;ds > 0.
de; =70 /0 ( ds * ds? ds3 Jmids
Hence a contradiction.
By continuity, G = 0 must also hold a¢ = 0, L. n

The partial derivative further reduces to

aU* ~ dHa// d2Ha/// L
Pe, 19=0 = (E(Ho — 75 T a2 ) + A3)nilg’ — feosén;(0)
~ dHa/H sSin ~
+ (E(Hor — )+ A)nils + f qz5772(0) + (EHym 4+ s)n 5.

ds k(0)

Now we letn;(s) = C' # 0 be a constant function. All derivatives vanish, resulting i

~ dHa// d2 Ha”’
_l’_

(E(Hy — - T )+ X3)|§C — feospC = 0.

The two terms involving\; cancel each other, yielding

dHa// 1 dQHaW . fCOSgb

L
ds ds? o = E

(Haor —

Similarly, we letn;(s) = sin% with its values and second derivatives vanishing at

0,L. We end up with the equation

- dH 2m stng 2w
E(Hun — M) |5= — =0.
Again, \, gets eliminated, yielding
dH m sin¢
Ha// — @ L = — =
( ds ) 0 fE/ﬁj(O)
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Finally, we choosey;(s) = cos%. Then all first derivative terms disappear. The first two

terms involvingn;(0) andn;(L) cancel each other becaug€0) = n;(L) and

L Jcosd
ds ds? o =

dHa// d2 Ham
+

(Ha’ -

Hence we have

HawloL =0.

E

To summarize, the curve after deformation satisfies thedifitial equation

H. dH . . d*H ,» B d®H oy _
ds ds? ds?
subject to the following constraints
(b — Mty Dy Jeosd,
dH m sin
(oo = S0 = 15
Horlg = 0,
aly =0,
olg =0,
o'ly =0,
a(s) 0,
o'(s1) 0.

5.3.4 Unit Circle

(5.33)

(5.34)

(5.35)
(5.36)
(5.37)
(5.38)
(5.39)
(5.40)

(5.41)

Consider a unit circle under the applied force at its leftnpmsht in the direction of the

positivez-axis. In this case,

3
¢ - 77
L = 2m,
S1 = T,
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H — (Od’—i—Oé’”)Z,
H, = H.m 22(()/4—()/”),
H, = Hu =0.

The differential equation and boundary conditions are #frag with substitution of the

above expressions.

o’ +20@ 4+ a© — 0. (5.42)
subject to
o +2" +a® P = 0, (5.43)
o + oW — _%, (5.44)
o + P =0, (5.45)
alf™ = 0, (5.46)
o7 = 0, (5.47)
o7 = 0, (5.48)
afr) = 0, (5.49)
o(m) = 0. (5.50)

Substitute (5.45) into (5.43), (5.48) and (5.47) into (5.4dd (5.45), respectively:

"+ PP = 0, (5.51)
4)12n  _ f

o = -2 5.52

B Y (5.52)

o"F = 0. (5.53)

Then we substitute (5.53) into (5.51):
a<5>|3” =0.
Finally, rewrite all conditions:

alZ” = 0, (5.54)
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JPF =0, (5.55)
o = 0, (5.56)
Nar (5.57)
MO _%, (5.58)
a®Fm =, (5.59)
a(r) = 0, (5.60)
o(r) = 0. (5.61)

5.3.4.1 Simulation

This boundary problem is best solved using the finite difieeemethod. We split the
interval[0, 27| into NV equal parts, each of width = %’r Since the differential equation (5.42)

is linear, using the scheme of central difference, it reduoe

Uy + (2A% — 6)appo + (A* — 8A? + 15)ayy + (—2A% 4+ 12A% — 20)ay,

H(A* = 8A% +15)a_y + (2A% — 6)ap_s + 3 =0,  for n=0,1,---,N.

To solve this problem numerically, we need to introduce unkmsor_3, a9, 1, Ay 11,
anyo, anday, 3. We can eliminate these unknowns outside the interval wtrereriginal
problem is posed by exerting the boundary conditions (5&4%9). Finally, we will create a
system of linear equations which can be easily solved.

This bending only problem can also be solved using FEM. Dehgt/, the potential of

the external load. We have

. 1 Lo,
min §ew/0 (he +E< )ds — Uy,

: 1 L
subject to iew/ he’ds = 0.
0

Imposing the bending only constraint requires the use ofdmage multipliers. The problem
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(

y A
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pre-deformation

N
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Figure 5.15 Deformation of a circle, (a) calculus of vanas solution and (b)
FEM solution. It is anchored at rightmost point and squeeated
leftmost point in the direction of the positiveaxis.
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reduces to
1 L h3 1 L
min —ew/ (hé* + —=(*)ds — U, + )\(—ew/ he*ds).
2 ) 12 2 )

Figure 5.15(a) shows the deformation of this circle obtdinging calculus of variations.
Figure 5.15(b) shows the results using FEM. The mechanrcglgties are the same for both
methods. There is more cave-in for the calculus of variatswiution. For an arbitrary shape
curve, calculus of variations will be very difficult to impleent because of the complexity of
the high order differential equation. In comparison, FEMyplicable to any shape without
increasing the complexity. Usually, energy minimizatioging FEM is numerically more
stable. Meanwhile, exerting boundary conditions is mar@ghtforward in the FEM solution

compared with the calculus of variations one. Thus, FEM égared.
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CHAPTER 6. CONCLUSION AND FUTURE WORK

In this chapter, we summarize our work, review contribusioand discuss the needed

future work.

6.1 Conclusion

The first part of this thesis investigates deformable modedif general shell-like objects.
First, we describe the linear and nonlinear shell theoneependently of a shell's middle
surface parametrization, making them applicable to ayitparametric shells (and thus to
freeform shells which are well approximated by spline ordsuision surfaces}. Second, we
empirically compare our method with existing commercidhware packages, establishing a
convergence rate an order of magnitude higher. Third, weraxgntally compare the linear
and nonlinear elasticity theories in the context of a defrla object interacting with a robot
hand, confirming that the nonlinear theory is more appré@gaven large deformations often
generated by the action of grasping.

Our modeling method is based on the physical theory of elastind experimental val-
idated. It could potentially influence interactive compugeaphics on achieving higher real-
ism, especially on accurate computation of strain energydafiormation under applied force.

The second part of this thesis investigates two-finger stpigeasp analysis of deformable

curve-like objects. Both linear and nonlinear thin shellotfes are reduced to be applicable

1The parametric independent formulation of strains alsoamnékpossible to treat shells described by implicit
equations, even though they are not common in practice.
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to thin curved objects, which are essentially degeneraglisshThis deformation modeling
technique serves as the base for our analysis.

Under a squeeze grasp, the rotations of the finger contatibfricones depend on the
global geometry of the object rather than on the local cargaometry. It is very difficult, if
not impossible, to find a closed-form function that des@itech a rotation in terms the force
magnitude. Grasp analysis is best carried out by numericalegures via energy minimiza-
tion.

At some initially “not-graspable” positions, the squeearcé magnitude has to be above
certain threshold in order to grasp a deformable objectoedtion plays a positive role in
grasping of a deformable object. The set of “graspable”tos may increase compared to a
rigid object which has the same geometry with the pre-grtetp sf the deformable one.

The ability to resist disturbance is quite different betweegrasp of a deformable object
and that of a rigid one. With the magnitude of a disturbancedancreasing, the grasp may
be broken for the deformable object. In comparison, anyidisince force can be resisted by

a force-closure grasp of the rigid object.

6.2 Future Work

Up to now, not many research efforts have been devoted tpiggasf deformable objects.
This thesis provides our initial work in this area. Alongstipromising line of research, there

are several interesting and important future directions:

e Grasp synthesiHow to find the best graspable position under energy priesi

e Grasp evaluation How to evaluate a deformable grasp? There are numerougsetr
for graspings of rigid objects. However, most of them areapgilicable to deformable

grasp.
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e Area contact The frictional force and moment depend on the pressureilaisbn

inside the contact area.

e Solids Solid objects are more common to be grasped in our daily life

www.manharaa.com




89

BIBLIOGRAPHY

[1] J. H. Argyris and D. W. Scharpf, “The SHEBA family of shellements for the ma-
trix displacement method. Part I. Natural definition of getm and strains,” Aero-

naut. J. Roy. Aeronaut. Seeol. 72, pp. 873-878, 1968.

[2] D. Baraff and A. Witkin, “ Large steps in cloth simulatiérin Proc. Comput. Graphics
Interactive Tech., SIGGRAPHL998, pp. 43-54.

[3] A. Barr, Global and local deformations of solid primitae In Proceedings of ACM

SIGGRAPH pages 21-30, 1984.

[4] R. Bartels, J. Beatty, and B. BarskyAn Introduction to Splines for Use in Computer

Graphics and Geometric Modeliniylorgan Kaufmann, Los Altos, 1987.
[5] K. J. Bathe,Finite Element Procedure$’rentice Hall, 1996.

[6] T. Belytschko and C. Tsay, “A stabilization procedure foe quadrilateral plate element

with one-point quadratureJht. J. Numer. Methods in Engrgl9, pp. 405-419, 1983.

[7] A. Bicchi and V. Kumar, “Robotic grasping and contact: aiesy” in Proc. IEEE
Intl. Conf. Robot. Autom2000, pp. 348—-353.

[8] A. Blake, “A symmetry theory of planar graspyit. J. Robot. Resvol. 14, pp. 425—-444,
2004.

www.manaraa.com



90

[9] G. M. Bone and Y. Du, “Multi-metric comparison of optimabD2grasp planning algo-
rithms,” in Proc. IEEE Int. Conf. Robot. Auton2001, pp. 3061-3066.

[10] M. Bro-Nielsen and S. Cotin, “Real-time volumetric defaite models for surgery sim-

ulation using finite elements and condensatoinPiac. Eurographics1996, pp. 57—66.

[11] J. Chadwick, D. Haumann, and R. Parent, “Layered construd¢or deformable ani-
mated characters,” iRroc. Comput. Graphics Interactive Tech., SIGGRAP1989,
pp. 243-252.

[12] F. Cirak, M. Ortiz, and P. Scbder, “Subdivision surfaces: a new paradigm for thin-shell

finite-element analysisJnt. J. Numer. Methods in Engrgeol. 47, pp. 2039-2072, 2000.

[13] J. Collier, B. Collier, G. O'Toole, and S. Sargand, “Drapediction by means of finite-
element analysis,J. Textile Institutevol. 82, pp. 96—-107, 1991.

[14] J. J. Connor and C. A. Brebbia, “A stiffness matrix for a halrectangular shell ele-

ment,” J. Eng. Mech. Div.vol. 93, pp. 43-65, 1967.

[15] F. Conti, O. Khatib, and C. Baur, “Interactive renderingdafformable objects based
on a filling sphere modeling approach,” Rroc. IEEE Int. Conf. Robot. Auton2003,
pp. 3716-3721.

[16] J. Corneld and R. Sarez, “Fast and flexible determination of force-closureepehdent
regions to grasp polygonal objects,” Rroc. IEEE Int. Conf. Robot. Autom2005,
pp. 778-783.

[17] A. Dorfmann and R. B. Nelson, “Three-dimensional finitereent for analyzing thin

plate/shell structures)ht. J. Numer. Methods in Engrgrol. 38, pp. 3453—-3482, 1995.

[18] Z. Doulgeri and J. Peltekis, “Modeling and dual arm npautétion of a flexible object,”
in Proc. IEEE Int. Conf. Robot. Auton2004, pp. 1700-1705.

www.manaraa.com



91

[19] G. Farin,Curves and Surfaces for Computer Aided Geometric Dedgademic Press,

Inc., 2 edition, 1990.

[20] R. T. Fenner, Engineering Elasticity: Application of Numerical and Aniadal Tech-
niques Ellis Horwood, Ltd., 1986.

[21] R. H. GallagherFinite Element AnalysisPrentice-Hall, Inc., 1975.

[22] P. G. Ciarlet,The Finite Element Method for Elliptic ProblemNorth-Holland, Amster-
dam, 1978.

[23] S. F. Gibson and B. Mirtich, “A survey of deformable masl@h computer graphics,”
Technical Report TR-97-10, Mitsubishi Electric Research lratmies, 1997.

[24] K. Gopalakrishnan and K. Goldberg, “D-space and defolmsure grasps of deformable
parts,” Int. J. Robot. Resvol. 24, pp. 899-910, 2005.

[25] P. L. Gould,Analysis of Plates and ShellBrentice-Hall, 1999.

[26] J. P. Gourret, N. Magnenat-Thalmann, and D. Thalma8Simulation of object and hu-
man skin deformations in a grasping task,’Aroc. Comput. Graphics Interactive Tech.,

SIGGRAPH,. 1989, pp. 21-30.

[27] P. E. Grafton and D. R. Strome, “Analysis of axisymmesiells by the direct stiffness
method,”J. AIAA vol. 3, pp. 2138-2145, 1963.

[28] A. E. Green and W. Zernd heoretical Elasticity Oxford at the Clarendon Press, 1968.

[29] A. M. Howard and G. A. Bekey, “Recursive learning for defable object manipula-
tion,” in Proc. International Conference on Advanced Robotl@97, pp. 939-944.

[30] C. Holleman, L. E. Kavraki, and J. Warren, “Planning ysftbr a flexible surface patch,”
in Proc. IEEE Int. Conf. Robot. Autonil998, pp. 21-26.

www.manaraa.com



92

[31] S. Hirai, T. Tsuboi, and T. Wada, “Robust grasping matapan of deformable objects,”
in Proc. IEEE Symp. Assembly and Task Planng@p1, pp. 411-416.

[32] T.J.R.Hughes and W. K. Liu, “Nonlinear finite element lgses of shells: Part|. Three-
dimensional shells,Comput. Methods Appl. Mech. Engrgol. 26, pp. 331-362, 1981.

[33] D. L.James and D. K. Pai. Artdefo: accurate real timeodehble objects. IProceed-

ings of ACM SIGGRAPHyages 65-72, 1999.

[34] Y.-B. Jia, “Curvature-based computation of antipodabsps,” in Proc. IEEE
Int. Conf. Robot. Autom2002, pp. 1571-1577.

[35] Y.-B. Jia, “On computing optimal planar grasps,” Broc. IEEE/RSJ Intl. Conf. In-
tell. Robots and SystemE995, pp. 427-434.

[36] Y.-B. Jia and J. Tian, “Deformations of general paramethells: computation and ex-
periment,” inProc. IEEE/RSJ Intl. Conf. Intell. Robots and SysteB8, pp. 1796—
1803.

[37] J. Kerr and B. Roth, “Analysis of multifingered handsjt. J. Robot. Resvol. 4, pp. 3—
17, 1986.

[38] A. Kamoulakos, “Understanding and improving the restintegration of Mindlin shell

elements,’Int. J. Numer. Methods in Engrgeol. 26, pp. 2009-2029, 1988.

[39] A. Laulusa, O. A. Bauchau, J-Y. Choi, V. B. C. Tan and L. Li, dhvation of some shear
deformable shell elementdfit. J. Solids and Structuresiol. 43, pp. 5033-5054, 2006.

[40] A. M. Ladd and L. E. Kavraki, “Using motion planning fornkt untangling,”
Int. J. Robot. Resvol. 23, pp. 797-808, 2004.

www.manaraa.com



93

[41] Z.Li, S. S. Sastry, “Task-oriented optimal graspingbyltifingered robot handsJEEE
Trans. Robot. Automatvol. 4, pp. 32—44, 1988.

[42] Y. H.Liu, M. L. Lam, and D. Ding “A complete and efficienkgorithm for searching 3-D
from-closure grasps in the descrete domalBEE Trans. Robotvol. 20, pp. 805-816,
2004.

[43] C. Loop, “Smooth subdivision surfaces based on triagyl®1.S. thesis, Univ. Utah,
1987.

[44] A. E. H. Love, A Treatise on the Mathematical Theory of ElasticiBover, New York,
N.Y., 4 edition, 1927.

[45] Q. Luo and J. Xiao, “Contact and deformation modelingifdgeractive environments,”

IEEE Trans. Robotvol. 23, pp. 416—430, 2007.
[46] M. T. Mason,Mechanics of Robotic ManipulatioMIT Press, 2001.

[47] T.Matsuno and T. Fukuda, “Manipulation of flexible rapging topological model based
on sensor information,” ifProc. IEEE/RSJ Int. Conf. Intell. Robots and Syste20€6,
pp. 2638-2643.

[48] T. Mclnerney and D. Terzopoulos, “Deformable modelsmnadical image analysis: a

survey,” Medical Image Analysjol. 1, pp. 91-108, 1996.

[49] B. Mirtich and J. Canny, “Easily computable optimum gmsp 2-D and 3-D,” in
Proc. IEEE Int. Conf. Robot. Autonl994, pp. 739-747.

[50] B. Mishra and M. Teichmann, “Three finger optimal planeagps,” inProc. IEEE/RSJ
Int. Conf. Intell. Robots and System994.

www.manaraa.com



94

[51] M. Moll and L. E. Kavraki, “Path planning for deformableear objects,” IEEE
Trans. Robot. Automatvol. 22, pp. 625-636, 2006.

[52] M. Muller and M. Gross, “Interactive virtual materials,” Rroc. Graphics Interface

2004, pp. 239-246.

[53] A. Nealen, M. Miller, R. Keiser, E. Boxerman, and M. Carlson, “Physically loade-

formable models in computer graphic§dmputer Graphics Forun2006, pp. 809-836.

[54] V. D. Nguyen, “Constructing force-closure graspsit. J. Robot. Resvol. 7, pp. 3-16,
1988.

[55] V. V. Novozhilov, Foundnations of the Nonlinear Theory of Elasticitgraylock Press,

1953; Dover, 1999.
[56] V. V. Novozhilov, The Theory of Thin Shell$. Noordhoff Ltd., 1959.
[57] B. O’Neill, Elementary Differential GeometryAcademic Press, Inc., 1966.

[58] D. K. Pai, “STRANDS: Interactive simulation of thin sd§ using Cosserat models,”
Computer Graphics Forun2002, pp. 347-352.

[59] A. N. Palazotto and S. T. DennisNonlinear analysis of shell structuresAmerican

Institute of Aeronautics and Ast, 1992.

[60] G. Picinbono, H. Delingette, and N. Ayache, “Non-Line&ad Anisotropic Elastic Soft
Tissue Models for Medical Simulation,” iBroc. IEEE Int. Conf. Robot. Auton2001,
pp. 1371-1376.

[61] N. S. Pollard, “Closure and quality equivalence for édfit synthesis of grasps from

examples,’Int. J. Robot. Resvol. 23, pp. 595-613, 2004.

www.manaraa.com



95

[62] E. P. Popov, J. Penzien, and Z. A. Lu, “Finite elementisoh for axisymmetric shells,”

J. Eng. Mech. Div.vol. 90, pp. 119-145, 1965.

[63] J. Ponce and B. Faverjon, “On computing three finger fatosure grasp of polygonal

objects,”IEEE Trans. Robot. Automatol. 11, pp. 868—-881, 1995.

[64] J. Ponce, S. Sullivan, A. Sudsang, J. D.Boissonnat, aad\erlet, “On computing four-
finger equilibrium and force-closure grasps of polyhedigéots,” Int. J. Robot. Res.

vol. 16, pp. 11-35, 1997.

[65] J. Ponce, D. Stam, and B. Faverjon, “On computing twosfirfgrce-closure grasps of

curved 2D objects,Int. J. Robot. Resvol. 12, pp. 263-273, 1993.
[66] A. PressleyElementary Differential Geometrppringer-Verlag, 2001.

[67] J. N. Reddy,An Introduction to Nonlinear Finite Element Analysi®xford University
Press, 2004.

[68] J. N. ReddyAn Introduction to The Finite Element Methotiata Mcgraw-Hill, 2006.

[69] A. Remde, D. Henrich, and H. Worn, “Picking-up deformabhear objects with indus-

trial robots,” inProc. Int. Symp. Robgt1999.
[70] A. S. SaadaElasticity: Theory and Applicationsrieger Publishing Company, 1993.

[71] M. Saha and P. Isto, “Motion planning for robotic marigtion of deformable linear

objects,” inProc. IEEE Int. Conf. Robot. AutonR006, pp. 2478-2484.
[72] L. Segerlind,Applied Finite Element Analysigohn Wiley and Sons, New York, 1984.

[73] J. Stam, “Evaluation of loop subdivision surfaces,”Aroc. Comput. Graphics Interac-

tive Tech., SIGGRAPHCDROM Proceedings, 1998.

www.manaraa.com



96

[74] A. F. Stappen, C. Wentink, and M. H.Overmars, “Computingnobilizing grasps of
polygonal parts,nt. J. Robot. Resvol. 19, pp. 467-479, 2000.

[75] D. Terzopoulos, J. C. Platt, and A. H. Barr, “Elasticallgformable models,” in
Proc. Comput. Graphics Interactive Tech., SIGGRAPM87, pp. 205-214.

[76] D. Terzopoulos and K. Waters, “Physically-based fagiadeling, analysis, and anima-

tion,” J. Vis. Comput. Animatigmvol. 1, pp. 73-80, 1990.

[77] B. Thomaszewski, M. Wacker, and W. Stral3er, “A consisteanding model for cloth
simulation with corotational subdivision finite elemehts) Eurographics/SIGGRAPH

Symp. Comp. Animatiopp. 107-116, 2006.

[78] J. C. Trinkle, “On the stability and instantaneous véloof grasped frictionless objects,”

IEEE Trans. Robot. Automatol. 8, pp. 560-572, 1992.

[79] J. Tian and Y.-B. Jia, “Modeling deformable shell-likbjects grasped by a robot hand,”
in Proc. IEEE Int. Conf. Robot. Auton2009, pp. 1297-1302.

[80] S.P. Timoshenko and S. Woinowsky-Kriegéheory of Plates and ShellsicGraw-Hill,
2 edition, 1959.

[81] X. Tu and D. Terzopoulos, “Artificial fishes: physicsctumotion, perception, behavior,”

in Proc. Comput. Graphics Interactive Tech., SIGGRARI994, pp 43-50.

[82] H. Wakamatsu, S. Hirai and K. lwata, “Static analysisdeformable object grasping
based on bounded force closure,”Rroc. IEEE/RSJ Intl. Conf. Intell. Robots and Sys-
tems 1996, pp. 3324-3329.

[83] H. Wakamatsu, E. Arai, and S. Hirai, “Knotting/unknng manipulation of deformable

linear objects,”Int. J. Robot. Resvol. 25, pp. 371-395, 2006.

www.manaraa.com



97

[84] H. Wakamatsu and S. Hirai, “Static modeling of linearjemh deformation based on

differential geometry,Int. J. Robot. Resvol. 23, pp. 293-311, 2004.

[85] H. Wakamatsu, E. Morinaga, E. Arai, and S. Hirai, “Def@tion modeling of belt object
with angles,” inProc. IEEE Int. Conf. Robot. Auton2009, pp. 606-611.

[86] K. Washizu,Variational Methods in Elasticity and Plasticityergamon Press, 1968.

[87] K. Waters, “A muscle model for animating three-dimemsl facial expression,” in

Proc. Comput. Graphics Interactive Tech., SIGGRARI987, pp. 17-24.

[88] H. T. Y. Yang, S. Saigal, and D. G. Liaw, “Advances of tlshell finite elements and
some applications — version 1Comput. Structuresol. 35, pp. 481-504, 1990.

[89] H. T.Y. Yang, S. Saigal, A. Masud, and R. K. Kapania, “Awy of recent shell finite
elements,’Int. J. Numer. Methods in Engrgeol. 47, pp. 101-127, 2000.

[90] Y. Zhuang and J. Canny, “Haptic interaction of globalateiations,” inProc. IEEE
Int. Conf. Robot. Autom2000, pp. 2428-2433.

[91] O. C. Zienkiewicz, The Finite Element MethodcGraw-Hill, 3rd edition, 1979.

www.manaraa.com



	2010
	Modeling and grasping of thin deformable objects
	Jiang Tian
	Recommended Citation


	C:/Jiang/research/PhD/thesis/thesis.dvi

