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ABSTRACT

Deformable modeling of thin shell-like and other objects have potential application in

robot grasping, medical robotics, home robots, and so on. The ability to manipulate electrical

and optical cables, rubber toys, plastic bottles, ropes, biological tissues, and organs is an

important feature of robot intelligence. However, grasping of deformable objects has remained

an underdeveloped research area. When a robot hand applies force to grasp a soft object,

deformation will result in the enlarging of the finger contact regions and the rotation of the

contact normals, which in turn will result in a changing wrench space. The varying geometry

can be determined by either solving a high order differential equation or minimizing potential

energy. Efficient and accurate modeling of deformations is crucial for grasp analysis. It helps

us predict whether a grasp will be successful from its finger placement and exerted force, and

subsequently helps us design a grasping strategy.

The first part of this thesis extends the linear and nonlinearshell theories to describe exten-

sional, shearing, and bending strains in terms of geometricinvariants including the principal

curvatures and vectors, and the related directional and covariant derivatives. To our knowl-

edge, this is the first non-parametric formulation of thin shell strains. A computational pro-

cedure for the strain energy is then offered for general parametric shells. In practice, a shell

deformation is conveniently represented by a subdivision surface (12). We compare the results

via potential energy minimization over a couple of benchmark problems with their analytical

solutions and the results generated by two commercial softwares ABAQUS and ANSYS. Our

method achieves a convergence rate an order of magnitude higher. Experimental validation in-

volves regular and freeform shell-like objects (of variousmaterials) grasped by a robot hand,
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with the results compared against scanned 3-D data (accuracy 0.127mm). Grasped objects

often undergo sizable shape changes, for which a much highermodeling accuracy can be

achieved using the nonlinear elasticity theory than its linear counterpart. (In this part, the

derivations of the transformation based on geometric invariants and the strain computation on

a general parametric shell, and the interpretation of the geometry of strains were performed

by my thesis advisor Yan-Bin Jia.)

The second part numerically studies two-finger grasping of deformable curve-like objects

under frictional contacts. The action is like squeezing. Deformation is modeled by a degen-

erate version of the thin shell theory. Several differencesfrom rigid body grasping are shown.

First, under a squeeze, the friction cone at each finger contact rotates in a direction that de-

pends on the deformable object’s global geometry, which implies that modeling is necessary

for grasp prediction. Second, the magnitude of the graspingforce has to be above certain

threshold to achieve equilibrium. Third, the set of feasible finger placements may increase

significantly compared to that for a rigid object of the same shape. Finally, the ability to resist

disturbance is bounded in the sense that increasing the magnitude of an external force may

result in the breaking of the grasp.
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CHAPTER 1. INTRODUCTION

Deformable objects are ubiquitous in the world surroundingus, on all aspects from daily

life to industry. The need to study such shapes and model their behaviors arises in a wide

range of applications. In image processing, deformable curves and surfaces have been used to

segment images and volumes. The use of a deformable model usually results in a faster and

more robust segmentation technique that guarantees smoothness between image slices.

In the robot-assisted surgery, since most human organs are deformable, the integration

of physics-based deformable modeling has the potential to improve dexterity, precision, and

speed during the surgery as well as enable some new medical methods. Virtual/augmented re-

ality based real time and high fidelity simulation and training systems help enhancing medical

capability, in which deformable modeling plays a very important role.

In haptics, touch feedback from interaction with a deformable object is directly influenced

by the changing size and shape of the “contact” surface area.Both finger movement planning

and force control will rely on the updates of the local shape of contact and the global shape of

the object, as well as the force distribution over the contact area.

Deformation related interactive graphics applications require a continuously growing de-

gree of visual realism. In addition to the display quality, it is especially the way in which

the physical behavior eventually determines the degree of realism. All these have led to rapid

development of the field, where state-of-the-art results from very different areas—theoretical

physics, differential geometry, numerical methods, machine learning and computer graphics—

are applied to find solutions.
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1.1 Robot Grasping

In robotics,the ability to manipulate deformable objects is an indispensable part of a robot

hand’s dexterity and an important feature of intelligence.Grasping of rigid objects has been

an active area in the last two decades (7). The geometric foundation for form-closure, force-

closure, and equilibrium grasps is now well understood. However, grasping of deformable

objects has received much less attention until recently.

For rigid objects, a grasp of an object achieves force-closure when it can resist any external

wrench exerted on the grasped object. If any motion of an object is prevented, form-closure is

achieved. There are numerous metrics (35; 37; 41; 78) for grasp optimization using geometric

algorithms or nonlinear programming techniques.

Grasping of a deformable object is quite different from thatof a rigid one. Since the

number of degrees of freedom of a deformable object is infinite, it cannot be restrained by

only a finite set of contacts. Consequently, form-closure is no longer applicable. Does force-

closure still apply? Consider two fingers squeezing a deformable object in order to grasp

it. The normal at each contact point changes its direction, so does the corresponding contact

friction cone. Even if the two fingers were not initially placed at close-to-antipodal positions,

the contact friction cones may have rotated toward each other, resulting in a force-closure

grasp. At the same time, the magnitude of the external force is usually bounded (82). If the

magnitude exceeds some limit, the grasp will be broken.

Meanwhile, grasp analysis is no longer a purely geometric problem. The wrench space

will change as a result of varying geometry which can be decided by either solving high order

differential equation or minimizing potential energy. Reliable modeling of the deformations

is therefore crucial for grasp analysis. Most of the developed models are based on the linear

elasticity, which is geometrically inexact for large deformations.

This thesis investigates shape modeling for shell-like objects that are grasped by a robot

hand. A shell is a thin body bounded by two curved surfaces whose distance (i.e., the shell
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thickness) is very small in comparison with the other dimensions. The thesis also includes a

preliminary study of several issues in two-finger grasping of deformable thin-curve-like ob-

jects which are lower dimensional analogues to the thin shell model. The high aspect ratio of

such thin objects often leads to instability in the computation. The computational cost of mod-

eling the physical process accurately is usually high. As far as the robot grasping application

is concerned, formulating models which are both physicallyaccurate and numerically robust

is very important.

1.2 Some Terminologies of Robot Grasping

• Force-Closure

A grasp of an object is a force-closure grasp if arbitrary forces and moments can be

exerted on this object through contacts.

• Form-Closure

A grasp of an object is a form-closure grasp if any motion of the object is prevented.

• Equilibrium

A grasp is in equilibrium if the sum of the forces and moments exerted on the object is

zero.

• Point contact with friction

A finger can exert any force inside the friction cone at the contact point.

1.3 Overview

The rest of the manuscript is organized as follows. Chapter 2 surveys related work in

robot manipulation and deformable modeling. Chapter 3 goes over necessary background in

differential geometry.
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Chapter 4 offers a clear geometric interpretations of the shell strains. Section 4.1 presents

the displacement field on a shell which describes the deformation completely. Based on the

linear elasticity theory of shells, Section 4.2 establishes that the strains and strain energy of a

shell under a displacement field are determined by geometricinvariants of its middle surface

including the two principal curvatures and two principal vectors. A computational procedure

for arbitrary parametric shells is then described. Section4.3 frames the theory of nonlinear

elasticity of shells in terms of geometric invariants.

Section 4.4 sets up the subdivision-based displacement field and describes the stiffness ma-

trix and the energy minimization process. Section 4.5 compares the simulation results over two

benchmark problems with their analytical solutions and those by two commerical softwares

ABAQUSandANSYS. Section 4.6 experimentally investigates the modeling of deformable ob-

jects grasped by a BarrettHand. It compares the linear theoryfor small deformations and the

nonlinear theory for large deformations through validation against range data generated by a

3-D scanner. We will see that nonlinear elasticity based modeling yields much more accu-

rate results when large grasping forces are applied. Section 4.7 discusses modeling errors and

future extensions.

Chapter 5 studies some issues in grasping of deformable curve-like objects. Section 5.1

transforms both linear and nonlinear modeling techniques from thin shells to thin curved ob-

jects. A cubic B-spline based nonlinear minimization of the potential energy is then described.

Section 5.2 gives a frame under which two-finger squeeze grasps can be analyzed. A proce-

dure of finding minimum graspable force magnitude is then presented. Graspable segments

are compared for a rigid object and a deformable one. Effectsof exerting a disturbance force

to a squeeze grasp are investigated. In Chapter 6, we summarize the work and discuss the

future directions.
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CHAPTER 2. RELATED WORK

Grasping is a very active research area in robotics. Deformable modeling has been studied

in the elasticity theory, solid mechanics, robotics, and computer graphics with a range of

applications.

2.1 Robot Grasping

2.1.1 Grasping of Rigid Objects

Grasping of rigid objects has been extensively studied in the last two decades (7). Grasps

can be classified into either force or form closure. They are usually investigated based on rigid

body kinematics. For a rigid object, the distance between any two points on the object is frame

invariant, subsequently, a set of forces applied to a rigid object at different locations can be

converted to an equivalent combination of force and moment at some representative points.

A grasp of a rigid object achieves force-closure when it can resist any external wrench

exerted on the grasped object (46). If any motion of an objectis prevented, form-closure is

achieved. In other words, form-closure means immobility, any neighboring configuration of

the object will result in collision with an obstacle.

For rigid objects, grasp analysis is a purely geometric problem. Force-closure for two-

finger grasping of a polygon is well understood based on geometry (54). Such a grasp is

force closure if the intersection of the two contact friction cones contains the line segment

connecting the two contact points. Nguyen (54) also introduced the concept of independent

regions, i.e. regions on the object boundary such that a finger in each region ensures a force-



www.manaraa.com

6

closure grasp independently of the exact contact point. He developed a geometrical approach

to determine the maximum independent regions on polygonal objects using four frictionless

contacts and two frictional contacts.

The problem of determining independent regions for polygonal or polyhedral objects has

also been studied in (63; 64; 74; 16). Ponce et al. (65) utilized cell decomposition to compute

pairs of maximal-length segments on a piecewise-smooth curved 2D object. Inside these

segments, fingers can be positioned independently with force closure guaranteed.

In (61), an approach to determine independent regions on 3D objects based on initial ex-

amples was proposed. In this method, the selection of a good initial example for a given object

remains as a critical step. The running time is polynomial inthe number of contacts, which

makes it possible to deal with grasps with relatively large numbers of contacts.

Blake (8) classified planar grasps into three types using the symmetry set, the anti-symmetry

set, and the critical set along with the friction function. Jia (34) gave a fast algorithm to com-

pute all grasps at pairs of antipodal points of a curved part based on differential geometry.

He divided the part into concave and convex pieces at points of inflexion and used iterative

methods including bisection to compute the grasps.

In (50), aO(n2 log n)-time algorithm was proposed to compute an optimal three-finger

planar grasp by maximizing the radius of a disk centered at the origin and contained in the

convex hull of the three unit normal vectors at the finger contacts. Assuming rounded finger

tips, an optimality for force-closure grasps was introduced in (49) where efficient algorithms

were developed for polygons and polyhedra.

Recently, an algorithm to compute form-closure grasps of 3D objects described by discrete

points has been presented in (42). This algorithm is based onan iterative search through the

points. Iterations are only needed to find some characteristic points of the object and they

do not imply hard iterative search procedures with the risk of falling in local minimum. The

method can deal with some uncertainty between the discrete points in the object description.

There are many methods for the planning of optimal grasps. A metric for measuring the
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sensitivity of a grasp with respect to positioning errors can be found in (9). The grasp with

insensitivity to positioning errors and ease of computation is considered good in terms of

overall performance.

2.1.2 Grasping of Deformable Objects

Compared with an abundance of research in grasping of rigid objects in the last two

decades, less attention has been paid to grasping of deformable objects. Wakamatsu et al. (82)

examined whether force-closure and form-closure can be applied to grasping of deformable

objects. Form-closure is not applicable because deformable objects have infinite degrees of

freedom and cannot be constrained by a finite number of contacts. They proposed the con-

cept of force-closure for deformable objects with bounded applied forces and defined bounded

force-closure as grasps that can resist any external force within the bound.

The deformation-space (D-space) of an object was introduced in (24) as the C-space of all

its mesh vertices, with modeling based on linear elasticityand frictionless contact. Deform

closure is defined in a situation where positive work is needed to release the part from the

frictionless contacts with fingers. This definition has frame invariant property. This model is

energy-based and not experimentally verified.

Howard and Bekey (29) modeled 3D deformable objects using a interconnected particles

and springs model, which formed a discretization of the initial object. The motions of par-

ticles were calculated using the Newtonian equations. A neural network was used to control

a manipulator. They used deformation to learn the properties of the deformable objects, and

thus determined the minimum force needed to lift the deformable object.

Work on robotic manipulation of deformable objects has beenmostly limited to linear and

meshed objects (84; 51). Most recently, a “fishbone” model based on differential geometry for

belt objects was presented and experimentally verified (85). In this model, the deformed shape

of a belt object was estimated by minimizing the potential energy. The nonlinear minimization
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was performed based on the Ritz’s method. The problem under geometric constraints was

converted into a unconditional minimization problem with Lagrange multipliers. The model

only works fordevelopable surfaces.

Hirai et al. (31) proposed a control law for grasping of deformable objects, using both

visual and tactile methods to control the motion of a deformable object. In their method,

although uncertainties existed during the handling process, grasping and manipulation were

performed simultaneously. This control strategy was carried out with no need of deformable

modeling.

Saha and Isto (71) proposed a motion planning method for manipulation of deformable

linear objects (DLO). This motion planner constructed a topologically-biased probabilistic

roadmap in the DLO’s configuration space. It also did not assume any specific physical model

of the DLO. Motion plannings for several objects (rope, suture, strand etc.) could be realized

by their method.

Holleman et al. (30) presented a path planning algorithm fora flexible surface patch. They

used a B́ezier surface and an approximate energy function to model deformation of the patch.

This energy model penalized deformations that induce high curvatures, extension, and shear

of the surface. They presented experimental results of paths planned for parts generated by a

search graph using probabilistic roadmap.

Knotting of flexible linear object such as a wire or rope can beeasily done with a vision

system (47). A recognition method was proposed to obtain thestructure of rope from sensor

information through the cameras when a robot manipulates a rope. Two knot invariants, Jones

and Bracket Polynomials, were utilized. Unknotting (40), and knotting (83) are the typical

manipulation operations on this type of linear objects, which can be carried out with no need

of deformable modeling.

Doulgeri and Peltekis (18) created a control model for manipulating a flexible part by a

dual arm system with rolling contacts on a plane. To obtain anefficient model of the part

dynamics, they treated part deformations as motion of a point mass that was at the point of
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maximum deformation at each contact. A feedback control strategy initially for stable grasp

of a rigid object was used for a flexible object. They simulated the part motion to show the

performance of their control loop.

2.2 Deformable Modeling

2.2.1 Computer Graphics

Modeling of deformation has been extensively studied in computer graphics. Gibson and

Mirtich (23) gave a comprehensive review. The main objective in this field is to generate

visual effects efficiently rather than to be physically accurate. Discrepancies with the theory of

elasticity are tolerated, and experiments with real objects need not be conducted. For instance,

the widely used formulation (75) on the surface strain energy, as the integral sum of the squares

of the norms of the changes in the first and second fundamentalforms, does not follow the

theory of elasticity.

In this field, there are generally two approaches to modelingdeformable objects: geometry-

based and physics-based (23). In a geometry-based approach, splines and spline surfaces such

as B́ezier curves, B-splines, non-uniform rational B-splines (NURBS), are often used as rep-

resentations (4; 19). In (3), for free-form deformation, the normal vector of the deformed

surface can be computed from the surface normal vector of theundeformed surface and a

transformation matrix. In this way, deformations can be easily combined in a hierarchical

structure.

Today’s interactive graphics applications, such as computer games or simulators, demand

a continuously growing degree of visual realism. In addition to the display quality, it is es-

pecially the way in which the physical behavior is simulatedthat eventually determines the

degree of realism experienced by the user. Physics-based modeling (53) of deformation takes

into account the mechanics of materials and dynamics to a certain degree. It combines dif-

ferential geometry, newtonian dynamics, continuum mechanics, numerical methods, vector
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calculus, and computer graphics. The Finite Element Method(FEM), the Finite Differences

Method, and the Finite Volume Method are powerful continuummechanics based methods.

Mass-spring systems simply consist of point masses connected together by a network of

massless springs. Though slow on simulating material with high stiffness, they are used exten-

sively in animation (11), facial modeling (87; 76), surgery(15), and simulations of cloth (2),

and animals (81). However, unlike the FEM and the Finite Differences Methods, which are

built on elasticity theory, mass-spring systems are not necessarily accurate.

The skeleton-based method (45) achieves efficiency of deformable modeling by interpo-

lation. It computes the stresses/strains only at contact points and geometrically salient points

and then interpolates over the entire surface.

Deformable model-based techniques offer a powerful approach to medical image analysis.

They have been applied to images generated by computed tomography (CT), magnetic reso-

nance (MR), and ultrasound. It is especially useful in the tasks including segmentation and

matching, where the traditional image processing techniques are not sufficient. The “snake

model” is widely used in medical image analysis (48). Snakesare planar deformable curves

that are often used to approximate edges or contours in a sequence of images. They exhibit

two principal behaviours: stretching and bending. Deformation of the snake is obtained by

minimizing the total potential energy.

2.2.2 Elasticity

The FEM (21; 72; 5; 22), for modeling deformations of a wide range of shapes, represents

a body as a mesh structure, and computes the stress, strain, and displacement everywhere in-

side the body. FEMs are used to model the deformations of a wide range of shapes: fabric (13),

a deformable object interacting with a human hand (26), human tissue in a surgery (10), etc.

If an elastic object is sampled over a regular spatial grid, the differential equation governing

the motion can be discretized using finite differences. As far as implementation is concerned,
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this method is easier than the general FEM. Pioneering usagein computer graphics was traced

back in (75). The directional derivative of the energy functional was discretized using the

Finite Differences Method.

The boundary element method (BEM) (33) solves displacementsand forces on the bound-

ary surface, and thus is more efficient than the FEM. Roughly speaking, the integral form of

the equation of motion is transformed into a surface integral by applying the Green-Gauss

theorem. The method achieves substantial speedup because the three dimensional problem is

reduced to two dimensions. However, the approach only worksfor objects whose interior is

composed of a homogeneous material.

Small deformation of a linear object can be modeled using beam elements in FEM (80).

Large deformation can be modeled by the nonlinear FEM. The Cosserat formulation was

introduced to describe linear object deformation (58). A Cosserat element has six degrees of

freedom: three for translation and three for rotation. It can deal with geometric non-linearity.

This model reduces to a system of spatial ordinary differential equations which can be solved

efficiently.

Most recently, modeling based on differential geometry hasbeen proposed by Wakamatsu

and Hirai (84). Their method described linear object deformation, i.e., flexure, torsion, and

extension, by four functions: three Eulerian angles and oneextensional strain. The deformed

shape was decided by an algorithm based on the Ritz’s method. Their computation results

were experimentally verified by measuring the deformed shape of a sheet of paper.

Thin shell finite elements originated in the mid-1960s. Yanget al. (88; 89) gave two com-

prehensive surveys on thin shell finite elements. It is well-known that the convergence of thin

shell elements requiresC1 interpolation, which is difficult. From a view point of engineering,

it is crucial to formulate models which are both physically accurate and numerically robust for

arbitrary shapes.

The bending energy of a deformed shell contains second orderderivatives of the displace-

ment. In order to ensure that it is finite, the basis functionsinterpolating the displacement
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field have to be square integrable. Cirak et al. (12) introduced an FEM based on subdivision

surfaces which meets such requirement. Assuming linear elasticity, they presented simulation

results for planar, cylindrical, and spherical shells only. The work was extended in (77) to

model dynamics in textile simulation.

Other thin shell FEMs include flat plates (91), axisymmetricshells (27; 62), and curve ele-

ments (14). More recently, computational shell analysis inthe FEM has employed techniques

including degenerated shell approach (32), stress-resultant-based formulations (1), integration

techniques (6), 3-D elasticity elements (17), etc.

Picinbono et al. (60) proposed rotation invariant nonlinear FEM to the modeling of anisotropic

soft tissues for real-time simulation. They solved the problem of rotational invariance of de-

formations and took into account the incompressible properties of biological tissues.

For grasping, it is common to ignore dynamics in modeling deformations using energy-

based methods, which allows us to treat the grasping problemquasistatically. In computer

graphics field, especially for real time simulation, it is necessary to simulatedynamicde-

formable objects. In this case, the unknown position vectorfield is given implicitly as the solu-

tion of some differential equation. The simplest numericalintegration scheme is explicit Euler

integration, where the time derivatives are replaced by finite differences. Stability and accu-

racy are two main standards to evaluate the performance of a numerical integration method.

Geometrically nonlinear FEM has been applied to the global deformation with real-time

haptics rendering for solid objects by Zhuang and Canny (90).They numerically integrated

the differential equations by explicit Newmark scheme. In order to realize real-time render-

ing, they approximated the stiffness matrix by a diagonal matrix. This matrix was obtained

by lumping the rows of the original matrix. The diagonalization process was equivalent to

approximating the mass continuum as concentrated masses ateach nodal point of the mesh.

In this way, the distributed mass is converted to a particle system.

Linear differential equations yield linear algebraic systems which can be solved more effi-

ciently and more stably than nonlinear ones. Unfortunately, linearized elastic forces are only
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valid for small deformations. Large rotational deformations yield highly inaccurate artifacts.

To remove these artifacts, M̈uller and Gross (52) extracted the rotation part of the deforma-

tion for each finite element and computed the forces with respect to the non-rotated reference

frame. This method yields fast and stable visual results.
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CHAPTER 3. SOME BACKGROUND IN DIFFERENTIAL

GEOMETRY

This chapter reviews some basics in differential geometry which are needed in the follow-

ing chapters. For more on elementary differential geometry, we refer to (57; 66). The reader

may skip this chapter if he/she is familiar with the content.

Throughout this thesis, we will denote byfu the derivative of a functionf(u) with respect

tou, and byfuu the second derivative with respect to the same variable. Allvectors will appear

in the bold face. Curves, surfaces, curvatures, and torsionswill be denoted by Greek letters by

convention. Points, tangents, normals and other geometricvectors will be denoted by English

letters, also by convention.

3.1 Plane Curves

Let σ(u) be a curve in two dimensions as shown in Figure 3.1. Lett be the tangent vector

of σ. We have

t = σu. (3.1)

The velocity ofσ atu is the tangent vectort. A curve is regular if its speed‖t‖ is not zero ev-

erywhere. To make physical sense, the curve is parametrizedby arc length. Such parametriza-

tion leads to a unit speed curve. Computation will easily carry over to arbitrary speed curves.

The normaln of the curve is the unit vector obtained by rotatingt counterclockwise byπ
2
.
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t

n

Figure 3.1 A curve.

Now letσ(u) = (x(u), y(u))T . Then

t =
(xu, yu)

T

√

x2
u + y2

u

,

n =
(−yu, xu)

T

√

x2
u + y2

u

.

The curvatureκ is the rate of change of direction at some point of the tangentt with respect

to arc length. For a 2D curve, we have

κ =
xuyuu − xuuyu

(x2
u + y2

u)
3

2

.

The following equations hold for vectorst andn.

tu = κn, (3.2)

nu = −κt. (3.3)

The proof can be found from a standard differential geometrytextbook.

3.2 Surfaces

Let σ(u, v) be a surface patch in three dimensions. It isregular if it is smooth and its

tangent plane at every pointq is spanned by the two partial derivativesσu andσv. In other

words,σ(u, v) should be smooth andσu × σv should be non-zero everywhere.
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The unit normal to the surface isn = σu×σv

‖σu×σv‖ . Thefirst fundamental formof σ is defined

asEdu2 + 2Fdudv + Gdv2, where

E = σu · σu, F = σu · σv, G = σv · σv. (3.4)

Denote bys the arc length of a curve on the surface patch. We have

ds2 = Edu2 + 2Fdudv + Gdv2. (3.5)

Thefirst fundamental formrelates the change in arc length to the corresponding changes in the

curvilinear coordinates. Thesecond fundamental formis defined asLdu2 +2Mdudv +Ndv2,

where

L = σuu · n, M = σuv · n, N = σvv · n. (3.6)

This expression is just a convenient way of keeping track ofL, M , andN .

A compact representation of the two fundamental forms comprises the following two sym-

metric matrices:

FI =







E F

F G






, (3.7)

FII =







L M

M N






. (3.8)

Denote byu an unit tangent vector atq. The normal section atq in the u direction is

the intersection of the surface with a plane containingu and the surface normaln. This

intersection is a curve on the surface. The corresponding curvature atq is defined as the

normal curvatureκn(u). The maximum and minimum values of the normal curvatureκn(u)

are the twoprincipal curvaturesκ1 andκ2 at the pointq. The geometric interpretation is that

they represent the maximum and minimum rates of change in geometry when passing through

q at unit speed on the patch.

As far as the computation is concerned, the principal curvatures are eigenvalues ofFII

FI

.

They are achieved in two orthogonal directions. These directions, denoted by unit vectorst1
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andt2, are referred to as theprincipal vectors, where the indices are chosen so thatn = t1×t2.

The principal vectors are linear combinations ofσu andσv, which span the tangent plane at

q:

t1 = ξ1σu + η1σv, (3.9)

t2 = ξ2σu + η2σv. (3.10)

Here(ξ1, η1)
T and(ξ2, η2)

T are the eigenvectors ofF−1
I FII corresponding toκ1 andκ2, re-

spectively. The three vectorsn, t1, andt2 define theDarboux frameat the pointq as shown

in Figure 3.2.

n

1t

2t

Figure 3.2 Darboux frame.

The normal curvature atq in the directionu = cosθt1 + sinθt2 is

κn(u) = κ1cos
2θ + κ2sin

2θ. (3.11)

If the normal curvatureκn(u) is constant on all unit tangent vectors, the pointq is called

umbilic. In this case, geometric variation is the same in every tangent direction. Any two

orthogonal directions on the tangent plane can be selected as t1 andt2. If q is not a umbilic

point, which meansκ1 6= κ2, there are exactly two principal directions and they are orthogonal.

TheGaussianandmean curvaturesare respectively the determinant and half the trace of

the matrixFII

FI

:

K = κ1 · κ2 =
LN − M2

EG − F 2
, (3.12)

H =
κ1 + κ2

2
=

1

2
· EN − 2FM + GL

EG − F 2
. (3.13)
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TheGaussian curvaturekeeps unchanged when a surface is reparametrized. In comparison,

themean curvatureeither stays the same or changes sign in this situation. A surface is flat if

its Gaussian curvatureis zero, and minimal if itsmean curvatureis zero.

A curve on the patch is called aline of curvatureif its tangent is in a principal direction

everywhere. The patch isorthogonalif F = 0 everywhere. It isprincipal if F = M = 0

everywhere. In other words, a principal patch is parametrized along the two lines of curvature,

one in each principal direction. On such a patch, the principal curvatures are simplyκ1 = L
E

andκ2 = N
G

, respectively, and the corresponding principal vectors are t1 = σu√
E

andt2 = σv√
G

.

On a principal patch, defining

A2 = σu · σu

and

B2 = σv · σv,

then we have

ds2 = Adu2 + Bdv2.

The quantitiesA andB are calledLamé coefficients or measure numbers.

3.3 Differentiating Surface Invariants

Next, we derive derivatives of the principal curvatures andprincipal vectors.

3.3.1 Differentiation of Principal Curvatures

The principal curvatures can be expressed in terms of the Gaussian and mean curvatures

(choosingκ1 ≥ κ2) as

κ1 = H +
√

H2 − K, (3.14)

κ2 = H −
√

H2 − K. (3.15)
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To obtain the partial derivatives ofκ1 and κ2 with respect tou and v from the above

equations, we first differentiate the fundamental form coefficientsE,F,G, L,M,N defined

in (3.4) and (3.6).

Eu = 2σuu · σu,

Ev = 2σuv · σu,

Fu = σuu · σv + σu · σuv,

Fv = σuv · σv + σu · σvv,

Gu = 2σuv · σv,

Gv = 2σvv · σv.

The partial derivatives of the unit normaln can be obtained as follows (66, p. 139).

nu = aσu + bσv,

nv = cσu + dσv.

where






a c

b d






= −F−1

I FII = − 1

EG − F 2







GL − FM GM − FN

EM − FL EN − FM






.

Then we have:

Lu = σuuu · n + σuu · nu,

Lv = σuuv · n + σuu · nv,

Mu = σuuv · n + σuv · nu,

Mv = σuvv · n + σuv · nv,

Nu = σuvv · n + σvv · nu,

Nv = σvvv · n + σvv · nv.

Finally, the partial derivatives ofK andH are then computed according to (3.12) and (3.13).
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3.3.2 Coefficients of Principal Vectors

Next, we derive the four coefficientsξ1, η1, ξ2, η2 in (3.9) and (3.10) as well as their partial

derivatives with respect tou andv. Since the principal curvaturesκi, i = 1, 2, are eigenvalues

of the matrixF−1
I FII , we have

0 = det(FII − κiFI)

= (L − κiE) · (N − κiG) − (M − κiF )2. (3.16)

There are two cases: (a)L − κiE = N − κiG = 0 for i = 1 or 2, and (b) eitherL − κiE 6= 0

or N − κiG 6= 0 for bothi = 1 andi = 2.

In case (a),M − κiF = 0 by (3.16). SoFII − κiFI = 0, i.e.,

F−1
I FII = κiI2,

whereI2 is the2 × 2 identity matrix. The two eigenvalues ofF−1FII , namely,κ1 andκ2,

must be equal. Any tangent vector is a principal vector. We let

t1 =
σu√
E

, with

(

ξ1

η1

)

=

( 1√
E

0

)

by (3.9).

The other principal vectort2 = ξ2σv + η2σv is orthogonal tot1. So

(ξ2σu + η2σv) · σu = 0, i.e., ξ2E + η2F = 0. (3.17)

To determineξ2 andη2, we need to use one more constraint:t2 · t2 = 1, which is rewritten as

follows,

Eξ2
2 + 2Fξ2η2 + Gη2

2 = 1. (3.18)

Substituting (3.17) into (3.18) yields

ξ2 = ∓
√

F 2

E(EG − F 2)
, and η2 = ±

√

E

EG − F 2
. (3.19)

In case (b),L − κiE 6= 0 or N − κiG 6= 0 for bothi = 1, 2. For i = 1, 2, we know that

(FII − κiFI)

(

ξi

ηi

)

= 0. (3.20)
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Equation (3.20) expands into four scalar equations according to (3.7) and (3.8) :

(L − κiE)ξi + (M − κiF )ηi = 0, (3.21)

(M − κiF )ξi + (N − κiG)ηi = 0. (3.22)

Three subcases arise for eachi value.

(b1) L−κiE = 0 butN −κiG 6= 0. It follows from equation (3.16) thatM −κiF = 0. Thus

equation (3.22) gives usηi = 0. ξi has an exponent 2, i.e.,ti · ti = Eξ2
i = 1, we obtain

ξi = ± 1√
E

.

(b2) L − κiE 6= 0 butN − κiG = 0. This is the symmetric case of (b1). The coefficients are
(

ξi

ηi

)

=

(

0

± 1√
G

)

.

(b3) L − κiE 6= 0 andN − κiG 6= 0. From equation (3.21) we have

ξi = −M − κiF

L − κiE
ηi. (3.23)

Substitution of the above into (3.18) yields a quadratic equation with the solution

ηi = ±
√

L − κiE

EN − 2FM + LG − 2κi(EG − F 2)
. (3.24)

In all expressions ofξi andηi, the signs are chosen such thatt1 × t2 = n.

The gradients∇ξi = (∂ξi

∂u
, ∂ξi

∂v
) and∇ηi = (∂ηi

∂u
, ∂ηi

∂v
), i = 1, 2, are obtained by differ-

entiating appropriate forms ofξi andηi that hold for all points in some neighborhood (not

necessarily the ones at the point).

3.3.3 Directional Derivatives over Principal Vectors

Let α be a scalar function defined over a surfaceσ(u, v). Its partial derivative with respect

to the parameteru can be written as follows:

αu = lim
∆u→0

α(σ(u + ∆u, v)) − α(σ(u, v))

∆u
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= lim
∆u→0

α(σ(u, v) + σu · ∆u) − α(σ(u, v))

∆u
def
= σu[α], (3.25)

whereσu[α] is defined as the directional derivative ofα with respect toσu.

Using (3.9)–(3.10), all the derivatives with respect to theprincipal vectorst1, t2 in equa-

tions, repetitive or not, can be obtained. For instance,

t1[α] = (ξ1σu + η1σv)[α]

= ξ1 · σu[α] + η1 · σv[α]

= ξ1αu + η1αv by (3.25).

3.3.4 Covariant Derivatives of Principal Vectors

Let q be a point onσ(u, v). The principal vectors atq aret1 andt2. We first observe that

(t2)u√
E

= lim
∆u→0

t2

(

σ(u + ∆u, v)
)

− t2(σ(u, v))

∆u
· 1√

E

= lim
∆u→0

t2(q + σu · ∆u) − t2(q)

∆u
· 1√

E

= lim
∆u

√
E→0

t2

(

q + (σu/
√

E) · ∆u
√

E
)

− t2(q)

∆u
√

E

= lim
∆s→0

t2(q + t1 · ∆s) − t2(q)

∆s
def
= ∇t1t2. (3.26)

Thecovariant derivative∇t1t2 measures the rate of change of the principal vectort2 as a

unit-speed surface curve passes through the pointq in thet1 direction.

Next, we have, fori, j = 1, 2,

∇titj = ∇ξiσu+ηiσv
tj

= ξi∇σu
tj + ηi∇σv

tj

= ξi∇σu
(ξjσu + ηjσv) + ηi∇σv

(ξjσu + ηjσv). (3.27)
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The first summand in (3.27) is computed as follows:

ξi∇σu
(ξjσu + ηjσv)

= ξi(σu[ξj] · σu + ξj∇σu
σu + σu[ηj] · σv + ηj∇σu

σv)

= ξi

(

∂ξj

∂u
σu + ξjσuu +

∂ηj

∂u
σv + ηjσuv

)

.

The first step above uses a fact about covariant derivatives:∇a(fb) = a[f ] · b + f · ∇ab.

The second step uses (3.25); namely, the directional derivatives of a scalar alongσu andσv,

respectively, are just its partial derivatives with respect to u andv. The same rule applies to the

covariant derivatives of a vector with respect toσu andσv. Similarly, we express the second

summand in equation (3.27) in terms of partial derivatives with respect tou andv. Merge the

resulting terms from the two summands:

∇titj =

(

ξi

∂ξj

∂u
+ ηi

∂ξj

∂v

)

σu +

(

ξi

∂ηj

∂u
+ ηi

∂ηj

∂v

)

σv

+ ξiξjσuu + (ξiηj + ξjηi)σuv + ηiηjσvv. (3.28)

3.3.5 Partial Derivatives of Principal Vectors

Proposition 1. The following equations hold for partial derivatives of the principal vectorst1

andt2 on a principal patchσ(u, v):

(t1)v =
(
√

G)u√
E

t2, (3.29)

(t2)u =
(
√

E)v√
G

t1. (3.30)

Proof. Due to symmetry we need only prove one equation, say, (3.30).Let us express the

derivative(t2)u in the Darboux frame defined byt1, t2, andn. Differentiating the equation

t2 · t2 = 1 with respect tou immediately yields(t2)u · t2 = 0. Next, we differentiatet2 ·n = 0

with respect tou:

(t2)u · n + t2 · nu = 0.
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Herenu is the derivative ofn along the principal directiont1 = σu

‖σu‖ , and hence must be a

multiple of t1.1 Therefore, the above equation implies(t2)u · n = 0.

Thus,(t2)u has no component alongt2 or n. We need only determine its projection onto

t1. First, differentiateσu · σv = 0 with respect tou, obtaining

σuu · σv = −σu · σuv. (3.31)

Next, we differentiatet2 · t1 = 0 with respect tou:

(t2)u · t1 = −t2 · (t1)u

= −t2 ·
(

σu√
E

)

u

= −t2 ·
(

σuu√
E

+
( 1√

E

)

u
σu

)

= −t2 ·
σuu√

E

= −σv · σuu√
EG

=
1√
G

· σu · σuv√
E

by (3.31)

=
(
√

E)v√
G

, sinceE = σu · σu.

1One can show thatnu = −Eκ1t1 though the details are omitted.
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CHAPTER 4. MODELING DEFORMATIONS OF GENERAL

PARAMETRIC SHELLS GRASPED BY A ROBOT HAND

This chapter investigates shape modeling for shell-like objects that are grasped by a robot

hand. A shell is a thin body bounded by two curved surfaces whose distance (i.e., the shell

thickness) is very small in comparison with the other dimensions. The locus of points at equal

distances from the two bounding surfaces is themiddle surfaceof the shell.

Shells have been studied based on the geometry of their middle surfaces which are assumed

to be parametrized along the lines of curvature (80; 25; 70).The expressions of extensional

and shear strains, and strain energy, though derived in a local frame at every point, are still

dependent on the specific parametrization rather than on geometric properties only. Such

parametrizations, while always existing locally, are verydifficult, if not impossible, to derive

for most surfaces. Generalization of the theory to an arbitrary parametric shell is therefore

not immediate. The Green-Lagrange strain tensor of a shell is presented in general curvilinear

coordinates in (28; 67). However, the geometry of deformation is hidden in the heavy use of

covariant and contravariant tensors for strains.

The strain energy of a deformed shell depends on the geometryof its middle surface and

its thickness, all prior to the deformation, as well as the displacement field. In this chapter, we

will rewrite strains in terms of geometric invariants including principal curvatures, principal

vectors, and the related directional and covariant derivatives.

All shell-like objects addressed in this chapter satisfy the following three assumptions:

1. They are physically linear but geometrically either linear or nonlinear.Physical linearity
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refers to that the elongations do not exceed the limit of proportionality so the stress-

strain relation is governed by Hooke’s law.Geometric nonlinearityrefers to that the

angles of rotation are of a higher order than the elongationsand shears.Geometric

linearity refers to that they are of the same order.

2. They are consideredhomogeneousandisotropic, i.e., having the same elastic properties

in all directions.

3. Their middle surfaces are arbitrarily parametric or so approximated.

4.1 Displacement Field of a Shell

As shown in Figure 4.1, denote byσ(u, v) the middle surface of a thin shell with thickness

h before the deformation. The parametrization is regular. Every pointp in the shell is along

the normal direction of some pointq on the middle surface; that is,p = q + zn, wherez is

the signed distance fromq to p.

h

1t

2t

n

p
q

'n

'1t
'2t

δ

'p
'q

pre-deformation

post-deformation

middle surface
),( vuσ

(a) (b)

Figure 4.1 Deformation of a shell. The pointp in the shell is along the direction
of the normaln at the pointq on the middle surface.p′ andq′ are
their displaced locations.
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The displacementδ(u, v) of q = σ(u, v) can be expressed in its Darboux frame:

δ(u, v) = α(u, v)t1 + β(u, v)t2 + γ(u, v)n. (4.1)

We call the vector fieldδ(u, v) thedisplacement fieldof the shell. After the deformation, the

new position ofq is

q′ = σ′(u, v) = σ(u, v) + δ(u, v).

At the same time, from classical shell theory (56, p. 178), the displacement ofp contains

another term linear in the thicknessz:

δ(u, v) + z













ϑ(u, v)

ϕ(u, v)

χ(u, v)













. (4.2)

The displaced positionp′ of the pointp may not be along the normal direction ofq′, due to a

transverse shear strainthat acts on the surface throughp and parallel to the middle surface.

This type of strain tends to be much smaller than other types on a shell and is often neglected

in classical shell theory (44; 80) under Kirchhoff’s assumption: straight fibers normal to the

middle surface of a shell before the deformation will

1. remain straight after deformation;

2. do not change their lengths;

3. and remain normal to the middle surface after deformation.

In this chapter,we adopt Kirchhoff’s assumption and do not consider transverse shear.

The linear elasticity theory is appropriate in the situation that the deformation of a shell is

small. It assumes that the magnitudes of angles of rotation do not exceed those of the elonga-

tions and shears. They are all sufficiently small when compared to unity. Under those assump-

tions, the squares and products of these terms are negligible. If those terms are compared with

unity, they can be dropped (55). The linear theory makes no difference between the values of
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the magnitudes and positions of the areas on which the stressacts for both pre-deformation

and post-deformation states.

4.2 Small Deformation of a shell

Most of the literature (56; 80; 70; 25) on the linear elasticity theory of shells1 have as-

sumed orthogonal curvilinear coordinates along the lines of curvature. Though in theory there

exists a local principal patch surrounding every point withunequal principal curvatures, most

surfaces (except simple surfaces such as planes, cylinders, spheres, etc.) do not assume such

a parametrization.

The exception, to our knowledge, is (28) in which general curvilinear coordinates are used

in the study of plates and shells. Nevertheless, the geometric intuition behind the kinematics

of deformation is made invisible amidst its heavy use of covariant and contravariant tensors to

express strains and stresses. The forms of these tensors still depend on a specific parametriza-

tion rather than on just the shell geometry.

Section 4.2.1 first reviews some known results on deformations and strain energy from the

linear shell theory. In Section 4.2.2, we will transform these results to make them independent

of any specific parametrization, but rather dependent on geometric invariants such as principal

curvatures and vectors. In the new formulation to be derived, geometric meaning of strains

will be more clearly understood. Section 4.2.4 will describe how to compute strains and strain

energy on an arbitrarily parametrized shell using tools from differential geometry.2

4.2.1 Strains in a Principal Patch

Let the shell’s middle surfaceσ(u, v) be a principal patch. Under a load, at the point

q on σ (see Figure 4.1(b)) there existextensional strainsǫ1 and ǫ2, which are the relative

1The theory is distinguished from the membrane theory which deals with elongations but ignores shearing
and bending.

2The mathematical derivations in Sections 4.2.2 and 4.2.3 were performed by my thesis advisor Yan-Bin Jia.
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increases in lengths along the two principal directionst1 andt2, respectively. They are given

as (25, p. 219):

ǫ1 =
αu√
E

+
(
√

E)v√
EG

· β − κ1γ, (4.3)

ǫ2 =
βv√
G

+
(
√

G)u√
EG

· α − κ2γ, (4.4)

whereE,F,G are the coefficients of the middle surface’s first fundamental form defined

in (3.4) andκ1 andκ2 are the two principal curvatures, all atq.

There is also thein-plane shear strainω. As shown in Figure 4.1(b),t′1 andt′2 are the unit

tangents from normalizing the two partial derivatives of the displaced surfaceσ′, respectively.

These vectors are viewed as the “displaced locations” of theprincipal vectorst1 andt2. The

angle betweent′1 andt′2 is no longerπ/2, andω is the negative change fromπ/2. We have

ω = ω1 + ω2, where (25, p. 219)

ω1 =
αv√
G

− (
√

G)u√
EG

· β, (4.5)

ω2 =
βu√
E

− (
√

E)v√
EG

· α. (4.6)

The extensional and in-plane shear strains atp, which is off the shell’s middle surface, will

also include some components due to the rotation of the normal n. Under the assumption of

small deformation, we alignt2 with t′2 and view in their common direction (see Figure 4.2).

Denote byφ1 the amount of rotation of the normaln′ from n about thet2 axis towardt1.

Similarly, let φ2 be the amount of rotation of the normal about thet1 axis towardt2. We

have (25, pp. 209–213)

φ1 = − γu√
E

− ακ1, (4.7)

φ2 = − γv√
G

− βκ2. (4.8)
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Figure 4.2 Rotation of the surface normal.

It is shown that3 the extensional strains atp = q + zn are

ǫ̂1 = ǫ1 + zζ1, (4.9)

ǫ̂2 = ǫ2 + zζ2, (4.10)

and the shearing strain at the point is

ω̂ = ω + z(τ1 + τ2), (4.11)

where the “curvature” and “torsion” terms (25, p. 219) are

ζ1 =
(φ1)u√

E
+

(
√

E)v√
EG

· φ2, (4.12)

ζ2 =
(φ2)v√

G
+

(
√

G)u√
EG

· φ1, (4.13)

τ1 =
(φ1)v√

G
− (

√
G)u√
EG

· φ2 (4.14)

τ2 =
(φ2)u√

E
− (

√
E)v√
EG

· φ1. (4.15)

The geometric meanings of these terms will be revealed in Section 4.2.2 after they are rewritten

into parametrization independent forms.

3by dropping all terms of orderhκ1 or hκ2 when compared to 1.
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Let e be the modulus of elasticity andµ the Poisson’s constant of the shell material. We

let τ = τ1 + τ2. Under Hooke’s law, the strain energy density is

dUǫ =
e

2(1 − µ2)
(ǫ̂2

1 + 2µǫ̂1ǫ̂2 + ǫ̂2
2 +

1 − µ

2
ω̂2)dV. (4.16)

The strain energy can be obtained as follows.

Uǫ =

∫

V

dUǫ

=
e

2(1 − µ2)

∫

V

(ǫ̂2
1 + 2µǫ̂1ǫ̂2 + ǫ̂2

2 +
1 − µ

2
ω̂2)dV

=
e

2(1 − µ2)

∫

σ

∫ h

2

−h

2

(ǫ̂2
1 + 2µǫ̂1ǫ̂2 + ǫ̂2

2 +
1 − µ

2
ω̂2)dzds

=
e

2(1 − µ2)

∫

σ

{

h
(

ǫ2
1 + ǫ2

2 + 2µǫ1ǫ2 +
1 − µ

2
ω2
)

+
h3

12

(

ζ2
1 + ζ2

2 + 2µζ1ζ2 +
1 − µ

2
τ 2
)

}√
EGdudv. (4.17)

The linear term inh above is due to extension and shear, while the cubic term is due to bending

and torsion.

4.2.2 Transformation based on Geometric Invariants

The strains (4.3)–(4.8), (4.12)–(4.15), and the strain energy formulation (4.17) are only

applicable to a middle surface which is parametrized along lines of curvatures. In order to

expand the application domain, these terms need to be generalized to arbitrary parametric

surfaces. Rewriting the strains in terms of geometric invariants like principal curvatures and

vectors that are independent of any specific parametrization is an indispensable step in the

generalization. We will present this below.

The middle surfaceσ(u, v) of a shell remains to be parametrized along lines of curvatures.

First, we rewrite the extensional strain (4.3) as follows:

αu = σu[α] by (3.25). (4.18)
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By the linearity of the directional derivative operator, we rewrite the first term in (4.3):

αu√
E

=
σu√
E

[α] = t1[α]. (4.19)

The termt1[α] does not depend on parametrization.

As far as the second summand in (4.3) is concerned, we first have

(t2)u√
E

= ∇t1t2 by (3.26). (4.20)

Next, we make use of the following identity:

(t2)u =
(
√

E)v√
G

t1, (4.21)

of which the proof is given in Proposition 1 in Chapter 3. Combine equations (4.20) and

(4.21):

(
√

E)v√
EG

t1 = ∇t1t2, and hence

(
√

E)v√
EG

= ∇t1t2 · t1. (4.22)

A second identity follows by symmetry:

(
√

G)u√
EG

= ∇t2t1 · t2. (4.23)

Substitutions of equations (4.19) and (4.22) into (4.3) result in a formulation of the exten-

sional strainǫ1 independent of the parametrization:

ǫ1 = t1[α] + (∇t1t2 · t1)β − κ1γ

= t1[α] + (∇t1t2 · t1)β + (∇t1n · t1)γ. (4.24)

The last step uses an equivalent definition of the principal curvature:κi
def
= −∇tin · ti.

4.2.3 Geometry of Strains

The first termt1[α] in (4.24) denotes a strain component as a result of the changerate of

the displacement in thet1 direction. As shown in Figure 4.3(a), we consider a pointr in the
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neighborhood ofq on some surface curve. This curve passes throughq at unit speed in the

t1 direction. After the deformation, these two points have newpositionsr′ andq′. Denote

by q′
1 andr′

1 the corresponding projections ofq′ andr′ ontot1 (before the deformation). As

r approachesq along the curve, the geometric interpretation oft1[α] is that it measures the

relative change in length betweenqr’s projection ontot1 andq′
1r

′
1.

1t
2t

q r

'q
'r

'1r
'1q

tangent plane middle surface

(a)

qr

w

'2q'2r

β2t

1
t

θ

tangent plane

(b)

Figure 4.3 Strain along a principal directiont1 partly due to (a) the change rate of
displacement in that direction and (b) displacement in the orthogonal
principal directiont2 due to its rotation alongt1.

In order to explain the second term in (4.24), we first observethat the two principal vectors

have undergone some rotations fromq to r. As shown in Figure 4.3(b), sincer is very close

to q, it can be placed on thet1 axis. Projecting the displaced locationsq′ andr′ onto the

corresponding second principal axes atq andr leads to two pointsq′
2 andr′

2. The projection

of the covariant derivative∇t1t2 onto t1 is equal to the cosine of the angleθ normalized

over‖r − q‖. Denote byw the projection ofr′
2 onto t1. The displacementβ alongt2 also
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contributes a component

‖w − r‖ = ‖r′
2 − r‖ cos θ = β cos θ

(normalized over‖r − q‖) to the strainǫ1. This component is the second term in equa-

tion (4.24).

Similarly, the third term in (4.24) is the part of the displacementγ alongn involved into

t1 due to the change of the normaln alongt1.

By the same derivation, parametrization independent formulations can be achieved for

other strain components (4.4)–(4.15):

ǫ2 = t2[β] + (∇t2t1 · t2)α + (∇t2n · t2)γ, (4.25)

ω1 = t2[α] − (∇t2t1 · t2)β, (4.26)

ω2 = t1[β] − (∇t1t2 · t1)α, (4.27)

φ1 = −t1[γ] + (∇t1n · t1)α, (4.28)

φ2 = −t2[γ] + (∇t2n · t2)β, (4.29)

ζ1 = t1[φ1] + (∇t1t2 · t1)φ2, (4.30)

ζ2 = t2[φ2] + (∇t2t1 · t2)φ1, (4.31)

τ1 = t2[φ1] − (∇t2t1 · t2)φ2. (4.32)

τ2 = t1[φ2] − (∇t1t2 · t1)φ1. (4.33)

α

2
t

q
1
t

'
2
t

Figure 4.4 Rotation of one principal vector toward another under deformation.
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The termǫ2 in (4.25) has a similar geometric explanation asǫ1 in equation (4.24). Next,

we interpret the geometric meaning ofω1 in (4.26). As shown in Figure 4.4, every point along

the principal directiont2 in a local neighborhood is displaced in thet1 direction by a value

which is equal to that of the functionα (see (4.1)) at that point. After the deformation, the

projections of the new locations of these neighborhood points form a vectort′2 in the original

tangent plane approximately. In essence, this new vector can be considered as a result of a

rotation oft2 during the deformation. Since theα values of these points are usually different,

t′2 is unlikely perpendicular tot1. Subsequently, the change ratet2[α] gives out the rotation

of t2 towardt1 after the deformation. The second term in (4.26) representsthe amount of

rotation fromt2 towardt1. This rotation is a result from the change in surface geometry at

q along the directiont2 and the displacementβ. Therefore this amount has to be subtracted

from the first term, yielding exactly (4.26). By the same reasoning,ω2 given by (4.27) is the

amount of rotation fromt1 towardt2. Their sum,ω = ω1 + ω2, is the shearing in the tangent

plane.

Similarly, the rotation fromt1 toward the normaln after the deformation is the negation of

φ1, which is given in (4.28). Recall that no shearing happens in the normalt1-n plane under

Kirchhoff’s assumption. Subsequently, the rotation fromn towardt1 must beφ1 to ensure

that the two vectors remain perpendicular to each other after the deformation. In the same

way,φ2 represents the rotation ofn towardt2.

The geometric meanings ofζ1, ζ2, τ1, andτ2 in (4.30)–(4.33) can be explained in a similar

way, though more complex. From differential geometry, we know that the derivative of a

rotation of the normaln about some tangent direction is the normal curvature. The term ζ1,

referred to aschange in curvature, accounts for the change rate of the angleφ1 along the

principal directiont1, plus the effect of the angleφ2 due to the change oft2 alongt1. The

termζ2 can be explained similarly. Together,ζ1 andζ2 measure the bending of the surfaces.

The sumτ = τ1 + τ2, referred to aschange in torsion, measures the twisting of the surface

due to the deformation.
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In the strain energy integral (4.17), the area element
√

EG dudv now needs to be replaced

by
√

EG − F 2 dudv to be applied to a regular patch on which the two partial derivatives are

not necessarily orthogonal, i.e.,F 6= 0. Hence we have

Uǫ =
e

2(1 − µ2)

∫

σ

{

h
(

ǫ2
1 + ǫ2

2 + 2µǫ1ǫ2 +
1 − µ

2
ω2
)

+

h3

12

(

ζ2
1 + ζ2

2 + 2µζ1ζ2 +
1 − µ

2
τ 2
)

}√
EG − F 2 dudv, (4.34)

with all strains given in (4.24)–(4.33).

4.2.4 Strain Computation for a General Parametric Shell

Since all the strain terms are expressed in terms of geometric invariants, we can compute

them on an arbitrary parametric shell using tools from differential geometry. From now on,

the middle surfaceσ(u, v) is not necessarily parametrized along the lines of curvature. To

compute the strains according to equations (4.24)–(4.33),we need to be able to evaluate the

directional derivatives of the principal curvaturesκ1, κ2 with respect to the principal vectors

t1 andt2, as well as the covariant derivatives∇titj, i, j = 1, 2 andi 6= j. All these derivatives

have been derived in Chapter 3.

Next, we derive the derivatives of the displacements. Recallthat the displacementδ is

described in the Darboux frame:

δ = αt1 + βt2 + γn,

wheret1, t2, andn are three orthogonal unit vectors. Therefore we have:

α = δ · t1,

β = δ · t2,

γ = δ · n.

All the derivatives with respect tou andv can then be obtained. For instance,

αu = δu · t1 + δ · t1u,
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αv = δv · t1 + δ · t1v,

βu = δu · t2 + δ · t2u,

βv = δv · t2 + δ · t2v,

γu = δu · n + δ · nu,

γv = δv · n + δ · nv.

Similarly, the higher order derivatives can also be computed.

4.3 Large Deformation of a Shell

When a shell undergoes a large deformation, the linear elasticity theory as presented in

Section 4.1 is no longer adequate. This is illustrated belowusing the example of a rotation

about thez-axis through an angleθ:












x′

y′

z′













=













cos θ − sin θ 0

sin θ cos θ 0

0 0 1

























x

y

z













−













x

y

z













.

No deformation happens, hence no strain along thex-axis, as confirmed by the nonlinear

theory (55, p. 13):

ǫx =
∂x′

∂x
+

1

2

[

(

∂x′

∂x

)2

+

(

∂y′

∂x

)2

+

(

∂z′

∂x

)2
]

= cos θ − 1 +
1

2

[

(cos θ − 1)2 + (sin θ)2]

= 0.

However, the linear elasticity theory yields a strain

ǫx =
∂x′

∂x
= cos θ − 1, (4.35)

which is negligible only when the rotation angleθ is small.
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As before,σ(u, v) is the middle surface of a thin shell, in a regular parametrization. We

look at a pointq = σ(u, v) in the middle surface with the displacement field (4.1) in the

Darboux frame defined by the two principal vectorst1 andt2, and the normaln at the point.

A point p = q + zn in the shell, which projects toq, has the displacement given as (4.2).

Under Kirchhoff’s assumption, atq the relative elongationε33 of a fiber along the normal

n, and shearsε13 andε23, respectively, in thet1-n andt2-n planes, are zero; namely,

ε33 = ε13 = ε23 = 0. (4.36)

Next, we present the nonlinear shell theory (55, pp. 186–193), and transform the related

terms into expressions in terms of geometric invariants. First, we have the relative elongations

of infinitesimal line elements starting atq as:

ε11 = ǫ1 +
1

2
(ǫ2

1 + ω2
1 + φ2

1), (4.37)

ε22 = ǫ2 +
1

2
(ǫ2

2 + ω2
2 + φ2

2), (4.38)

Next, the shear in the tangent plane spanned byt1 andt2 is

ε12 = ω1 + ω2 + ǫ1ω2 + ǫ2ω1 + φ1φ2. (4.39)

In (4.37)–(4.39),ǫi, ωi, φi, i = 1, 2, are given in (4.24)–(4.29). Note the appearance of non-

linear (quadratic) terms in equations (4.37)–(4.39). The strainsεij, i, j = 1, 2, 3, symmetric in

the indices, together constitute the Green-Lagrange strain tensor of a shell (67, pp. 201–202).

The rate of displacement in (4.2) along the normaln atq is determined as follows:

ϑ = φ1(1 + ǫ2) − φ2ω1, (4.40)

ϕ = φ2(1 + ǫ1) − φ1ω2, (4.41)

χ = ǫ1 + ǫ2 + ǫ1ǫ2 − ω1ω2. (4.42)

The relative elongations and shear atp (off the middle surface) are affected by the second

order changes in geometry at its projectionq in the middle surface. They are characterized
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by six “curvature” terms which are rewritten in terms oft1, t2 andn in the same way as in

Section 4.2.2:

κ11 = t1[ϑ] + (∇t1t2 · t1)ϕ + (∇t1n · t1)χ,

κ22 = t2[ϕ] + (∇t2t1 · t2)ϑ + (∇t2n · t2)χ,

κ12 = t1[ϕ] − (∇t1t2 · t1)ϑ,

κ21 = t2[ϑ] − (∇t2t1 · t2)ϕ,

κ13 = t1[χ] − (∇t1n · t1)ϑ,

κ23 = t2[χ] − (∇t2n · t2)ϕ.

Among them,κ11 andκ22 describe the changes in curvature alongt1 andt2, respectively;κ12

andκ21 together describe the twist of the middle surface in the tangent plane; andκ13 andκ23

describe the twists out of the tangent plane.

The six termsκij form the following three parameters that together characterize the varia-

tions of the curvatures of the middle surface along the principal directions:

ζ11 = (1 + ǫ1)κ11 + ω1κ12 − φ1κ13, (4.43)

ζ22 = (1 + ǫ2)κ22 + ω2κ21 − φ2κ23, (4.44)

ζ12 = (1 + ǫ1)κ21 + (1 + ǫ2)κ12

+ω2κ11 + ω1κ22 − φ2κ13 − φ1κ23. (4.45)

Finally, we have the relative tangential elongations and shear atp in terms of those atq in

the middle surface:

ε̂11 = ε11 + zζ11, (4.46)

ε̂22 = ε22 + zζ22, (4.47)

ε̂12 = ε12 + zζ12. (4.48)

Their derivation neglects terms inz2, as well as products ofz with the principal curvatures

−∇t1n · t1 and−∇t2n · t2.
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In the case of a small deformation, we neglect elongations and shears compared to unity,

for instance,1 + ε1 ≈ 1 in (4.43), as well as their products (also separately with curvature

terms) such asǫ1ω2 in (4.39). Equations (4.46)–(4.48) then reduce to

ε̂11 = ǫ1 + zκ11,

ε̂22 = ǫ2 + zκ22,

ε̂12 = ω + z(κ12 + κ21),

whereω = ω1 + ω2. These equations are essentially the same as (4.9)–(4.11) in the linear

elasticity theory of shells, withκii corresponding toζi, κ12 to τ1, andκ21 to τ2.

The strain energy of the shell has a similar form as (4.34) in the linear case:

Uǫ =
e

2(1 − µ2)

∫

σ

{

h
(

ε2
11 + ε2

22 + 2µε11ε22 +
1 − µ

2
ε2
12

)

+
h3

12

(

ζ2
11 + ζ2

22 + 2µζ11ζ22 +
1 − µ

2
ζ2
12

)

}√
EG − F 2 dudv. (4.49)

4.4 Energy Minimization over a Subdivision-based Displacement Field

The displacement fieldδ(u, v) = (α, β, γ)T of the middle surface of a shell describes its

deformation completely. At the equilibrium state, the shell has minimum total potential en-

ergy (20, p. 260), which equals its strain energy (4.34) or (4.49) minus the potential of applied

loads. Applying calculus of variations,δ(u, v) must satisfy Euler’s (differential) equations. A

variational method (86) usually approximatesδ(u, v) as a linear combination of some basis

functions whose coefficients are determined via potential energy minimization.

Since the curvature termsζ1, ζ2, andτ , or ζ11, ζ22, andζ12 contain second order derivatives

of the displacement, to ensure finite bending energy, the basis functions interpolatingδ(u, v)

have to be square integrable, and their first and second-order derivatives should also be square

integrable. Loop’s subdivision scheme meets this requirement (43). Recently, the shape func-

tions of subdivision surfaces have been used as finite element basis functions in simulation of

thin shell deformations (12).



www.manaraa.com

41

12

3
4

5

6
78

9

101112

(a)

s

t

1

1

0

(b)

Figure 4.5 (a) A regular patch with 12 control points defininga surface element
which is described in (b) barycentric coordinatess andt.

A subdivision surface, piecewise polynomial, is controlled by a triangular mesh withm

vertices positioned atx1, . . . ,xm in the 3-D space. Every surface element corresponds to a

triangle on the mesh, and is determined by the locations of not only its three vertices but also

the nine vertices in the immediate neighborhood. In Figure 4.5(a), the twelve vertices affecting

the shaded element are numbered with locationsxis, respectively. A point in the element is
∑12

i=1 bi(s, t)xi, wheres and t are barycentric coordinates ranging over a unit triangle (see

Figure 4.5(b)):{(s, t)|s ∈ [0, 1], t ∈ [0, 1 − s]}, andbi(s, t) are quartic polynomials called the

box spline basis functions(73). Their forms are listed as:

b1 =
1

12
(s4 + 2s3t),

b2 =
1

12
(s4 + 2s3w),

b3 =
1

12
(s4 + 2s3w + 6s3t + 6s2tw + 12s2t2 + 6st2w + 6st3 + 2t3w + t4),

b4 =
1

12
(6s4 + 24s3w + 24s2w2 + 8sw3 + w4 + 24s3t + 60s2tw + 36stw2
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+ 6tw3 + 24s2t2 + 36st2w + 12t2w2 + 8st3 + 6t3w + t4),

b5 =
1

12
(s4 + 6s3w + 12s2w2 + 6sw3 + w4 + 2s3t + 6s2tw + 6stw2 + 2tw3),

b6 =
1

12
(2st3 + t4),

b7 =
1

12
(s4 + 6s3w + 12s2w2 + 6sw3 + w4 + 8s3t + 36s2tw + 36stw2

+ 8tw3 + 24s2t2 + 60st2w + 24t2w2 + 24st3 + 24t3w + 6t4),

b8 =
1

12
(s4 + 8s3w + 24s2w2 + 24sw3 + 6w4 + 6s3t + 36s2tw + 60stw2

+ 24tw3 + 12s2t2 + 36st2w + 24t2w2 + 6st3 + 8t3w + t4),

b9 =
1

12
(2sw3 + w4),

b10 =
1

12
(2t3w + t4),

b11 =
1

12
(2sw3 + w4 + 6stw2 + 6tw3 + 6st2w + 12t2w2 + 2st3 + 6t3w + t4),

b12 =
1

12
(w4 + 2tw3),

wherew = 1 − s − t.

The advantage of a subdivision surface is that it can easily represent an object of arbitrary

topology. The shape of a shell after a deformation usually bears topological similarity to that

before the deformation. This suggests us to approximate thedeformed middle surface as a sub-

division surfaceσ′(u, v) over a triangular mesh that discretizes the original surface σ(u, v).4

The verticesxi of σ′(u, v) are at the positionsx(0)
i = σ(ui, vi) before the deformation; they

are later displaced byδi = xi − x
(0)
i , respectively.

Every surface elementS of σ′ is parametrized with the two barycentric coordinatess and

t. To compute the strain energyUǫ in (4.34) or (4.49), we need to set up the correspondence

between(s, t) and the original parameters(u, v). The triangular mesh ofσ′ induces a subdi-

vision of the domain of the original surface whose vertices(ui, vi) are the parameter values

of the vertices ofxi of σ′. In this domain subdivision, letσ′(uk, vk) be the 12 neighboring

4Subdividing the surface domain to approximate the displacement field directly does not generate a good
result, as we have found out via simulation with several surfaces, because the topology of the displacement field
is unknown beforehand.
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vertices ofσ′(u, v). Then

(u, v) =
12
∑

k=1

bk(s, t)(uk, vk). (4.50)

The corresponding point on the original surface is

σ(u, v) = σ

(

12
∑

i=1

bi(s, t)(ui, vi)

)

≈
12
∑

i=1

bi(s, t)σ(ui, vi) =
12
∑

i=1

bi(s, t)x
(0)
i . (4.51)

In the second step above, the functionσ(u, v) is locally approximated as linear over the small

domain region corresponding toS.

The displacement of a point on the middle surface in its Darboux frame is, by (4.1),

(α, β, γ) =
(

σ′(u, v) − σ(u, v)
)

(t1, t2,n). (4.52)

Obtaining the Jacobian with entries∂s
∂u

, ∂s
∂v

, ∂t
∂u

, and ∂t
∂v

from (4.51), the strain energy of the

shell can be integrated over each subdivision element ofσ′. For accuracy, all needed geometric

invariants are nonetheless computed under the original parametrizationσ.

If the middle surface of a shell is not parametric but either free-form or described by

an implicit equation, the subdivision surfaceσ′(u, v) for the deformed shape is subtended

by a triangular mesh over the shell’s 3-D range data before the deformation. Essentially,

the original middle surface is approximated byσ′ with the vertices at their pre-deformation

positionsx(0)
i .

Whether the shell is parametric or not, letm be the number of vertices of the subdivision

surfaceσ′. The deformed shape is characterized by the column vector∆ = (δT
1 , . . . , δT

m)T ,

which consists of3m coordinate variables. After the deformation, the verticesare atxi =

x
(0)
i + δi for 1 ≤ i ≤ m.
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4.4.1 Stiffness Matrix

In the case of a small deformation, the system is linear following the linear elasticity theory

and can be easily solved. We rewrite the strain energyUε in (4.34) into a matrix form:

Uε = ∆
T Ks∆, (4.53)

whereKs is the (symmetric) stiffness matrix constructed as follows. Assume there areNe

elements in the triangular control mesh ofσ′. Let Sk denote thekth element. Number the

neighboring vertices locally so they are atx1,x2, · · · ,x12, respectively. The displacement

field (α, β, γ)T of Sk is decided byδT
1 , . . . , δT

12, whereδi = (δ3(i−1)+1, δ3(i−1)+2, δ3(i−1)+3)
T ,

for 1 ≤ i ≤ 12. Each ofα, β, γ is a linear combination of these36 variables.

Next, we illustrate over the integral summand involvingǫ2
1 in (4.34). By its definition

(4.24),ǫ1 is still a linear combination of these36 variables, say,ǫ1 =
∑36

l=1 Nlδl. Let t1 =

(t1x, t1y, t1z)
T , t2 = (t2x, t2y, t2z)

T , andn = (nx, ny, nz)
T . The forms ofNls are given as, for

1 ≤ i ≤ 12,

N3(i−1)+1 = t1[bit1x] + (∇t1t2 · t1)bit2x + (∇t1n · t1)binx

= ξ1
∂bi

∂u
t1x + ξ1bi

∂t1x

∂u
+ η1

∂bi

∂v
t1x + η1bi

∂t1x

∂v

+(∇t1t2 · t1)bit2x − κ1binx,

N3(i−1)+2 = t1[bit1y] + (∇t1t2 · t1)bit2y + (∇t1n · t1)biny

= ξ1
∂bi

∂u
t1y + ξ1bi

∂t1y

∂u
+ η1

∂bi

∂v
t1y + η1bi

∂t1y

∂v

+(∇t1t2 · t1)bit2y − κ1biny,

N3(i−1)+3 = t1[bit1z] + (∇t1t2 · t1)bit2z + (∇t1n · t1)binz

= ξ1
∂bi

∂u
t1z + ξ1bi

∂t1z

∂u
+ η1

∂bi

∂v
t1z + η1bi

∂t1z

∂v

+(∇t1t2 · t1)bit2z − κ1binz,

wherebis are the subdivision basis functions, and(ξ1, η1) is from (3.9). From (4.34), the
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element stiffness matrixKǫ2
1 is a36 × 36 matrix (symmetric) with entries

K
ǫ2
1

lp =
e

2(1 − µ2)

∫

Sk

hNlNpdA. (4.54)

Similarly, we constructKǫ2
2 , Kǫ1ǫ2 , Kω2

, Kζ2

1 , Kζ2

2 , Kζ1ζ2, andKτ2

. The stiffness matrix for

the element is

KSk
= Kǫ2

1 + Kǫ2
2 + Kǫ1ǫ2 + Kω2

+ Kζ2

1 + Kζ2

2 + Kζ1ζ2 + Kτ2

. (4.55)

Now we need to assembleKSk
into Ks (3m×3m matrix). The local indices of the vertices

in KSk
are converted to the global indices. After adding rows and columns of zeros for all

vertices not appearing inSk, KSk
is expanded to a new3m × 3m matrix K ′

Sk
. The global

stiffness matrix sums up all element contributions:

Ks =
Ne
∑

k=1

K ′
Sk

. (4.56)

4.4.2 Minimization of Potential Energy

Denote byq(u, v) the load field, which does potential

Uq =

∫

σ

q(u, v) · δ(u, v) dA = ∆
T Q, (4.57)

whereQ is the vector of all nodal forces. The total potential energyof a shell is

U = Uε − Uq = ∆
T Ks∆ − ∆

T Q, (4.58)

where the strain energyUε is given in (4.53).

To minimizeU , a system of equations in∆ can be derived by differentiating (4.58) with

respect to the vector and setting all partial derivatives tozero:

2Ks∆ = Q. (4.59)
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The linear system (4.59) can be easily solved using Gaussianelimination or a sparse matrix

method.

A large deformation is governed by the nonlinear elasticitytheory. The strain energyUε

in (4.49) no longer takes the quadratic form∆T Ks∆, but rather a quartic form. Minimization

of the total potential energyUε − Uq is done iteratively. In the case of point contacts, a

conical initial displacement field is placed around each contact point. Minimization over the

radius of the deformed region sets the initial value of∆. The conjugate gradient method

is employed to improve on∆, with the gradients evaluated numerically. Interpolationin

the local neighborhood improves the computational efficiency. On a Dell Optiplex GX745

computer with 2.66GHz CPU and 3.00GB of RAM, it usually takes several minutes to obtain

the solution compared with several seconds in the linear case.

4.4.3 Boundary Conditions

Boundary conditions are handled in the same way as described in (12) — the boundary dis-

placements are determined only by vertices at most one edge away (including added artificial

vertices just outside the domain). This is because of the local support within the subdivision

scheme in Figure 4.5. For every boundary edge, one artificialvertex is introduced. As shown

in Figure 5.4, vertex 4 is artificial and positioned atσ4 = σ2 + σ3 − σ1, whereσ1, σ2, and

σ3 are the positions of the vertices 1, 2, and 3 which form a triangle. Vertex 4 affects the

geometry of the surface element which corresponds to the triangle. Under the clamped condi-

tion (displacements and rotations fixed), the displacements of the vertices on the boundary and

their adjacent vertices, inside or outside, must be zero. Under the simply supported condition

(displacements fixed and rotations free), the displacements of the vertices on the boundary

must be zero, while those of the adjacent vertices inside andoutside the boundary must be

opposite to each other.
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boundary

artificial vertex

1

3

4

2

Figure 4.6 Clamped boundary condition,δ1 = δ2 = δ3 = δ4 = 0; simply
supported boundary condition,δ2 = δ3 = 0, δ4 = −δ1.

4.5 Simulation

By default (except where specified otherwise), the metric system is used in our simulation

and experiment. For instance, the unit of Young’s modulus isPa while the unit of length is

meter. First, simulation tests under linear elasticity areconducted on a couple of bench mark

problems, and the results are compared with their analytical solutions.5 These problems in

mechanics were designed to provide strict tests to deal withcomplex stress states.

4.5.1 Square Plate

The first bench mark problem involves a square plate under uniform load of gravity. Here,

the effect of bending dominates those of elongation and shearing. As shown in Figure 4.7, the

plate’s boundary is clamped during the deformation. Listedon the right are the values of the

plate’s lengthL, thicknessh, Young’s modulusE, and Poisson’s ratioµ.

The maximum displacement at the center of the plate isumax ≈ 0.1376 according to the

analytical solution (80, p. 202), which is in the form of a trigonometric series. Figure 4.8 plots

the computed maximum displacements normalized overumax against the numbers of degrees

of freedom. Note that every vertex in the control mesh has three degrees of freedom. The

5Closed-form solutions rarely exist for general thin shell problems.
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h = 1.0
E = 1.0 · 107

µ = 0.3
p = 1.0

Figure 4.7 Plate under gravitational load and clamped at theboundary.

curve plot approaches the analytical value.6
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Figure 4.8 Convergence of the maximum displacement for the clamped plate in
Figure 4.7. The number of degrees of freedom equals three times the
number of vertices.

The geometry, load, and boundary condition are all symmetric in the example. The

Young’s modulus and the load represent only a scaling factorand do not affect the overall

deformed shape. In Figure 4.9, the loadp is scaled 200 times in order to illustrate the global

6The analytical solution considers bending only, whereas our formulation also incorporates in-plane exten-
sion, shearing and torsion, and is thus more realistic.
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deformed shape. The added artificial vertices are drawn in red.

Figure 4.9 Calculated deformed shape (deflection scaled) forthe clamped plate
(artificial vertices marked red) in Figure 4.7.

4.5.2 Clamped Cylindrical Shell Panel

Next, we consider a cylindrical shell panel with the following geometric and material

parameters and subjected to uniformly distributed transverse (normal to the surface) loadp:

α = 0.1rad., R = 100in.,

a = 20in., h = 0.125in.,

E = 0.45 × 106psi, µ = 0.3, p = 0.04psi.

As shown in Figure 4.10, this shell is clamped at its boundary.

α

R

a

p

h

Figure 4.10 Clamped cylindrical shell panel under uniform transervers loads.
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The vertical displacement at the center of the shell is1.144 × 10−2in. according to (59).

Figure 4.11 plots the computed maximum displacements normalized over the reference value

against the numbers of degrees of freedom. The curve approaches the reference value.
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Figure 4.11 Convergence of the maximum displacement for the clamped cylin-
drical shell panel in Figure. 4.10.

4.5.3 Comparison with Commercial Packages

Shell elements in commercial packages usually fall into twocategories: degenerated 3D

solid elements and elements based on thick shell theories (especially the Reissner-Mindlin

theory (39)).

A shell may be approximated as a collection of degenerated 3Dsolid elements, which are

simple to formulate because their strains are approximatedin Cartesian coordinates. Mean-

while, analysis of general curved shells uses curvilinear coordinates. Though this increases

the complexity of derivation, the use of curvilinear coordinates provides increased accuracy,

and is thus more preferable.

The Reissner-Mindlin theory allows for shearing throughoutthe thickness of a shell, and
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best models thick shells (38). It requiresC0 interpolation only, simplifying the underlying

basis functions, and is thus easy to implement. However, it often does not perform well in thin

shell analysis because of shear and membrane locking.

We will compare our method with the use of shell elements S3 and T6. The element

S3 is from the commercial softwareABAQUSand based on the thick shell theory. Served

as general-purpose shell element inABAQUS, it is widely used in industry for both thin and

thick shells. The element T6 is a degenerated 3D solid element from the SHELL93 library of

another commercial packageANSYS.

Our performance criterion is accuracy in terms of the total number of degrees of freedom,

which is standard in the FEM field. Here we use a well-known bench mark problem: a cylinder

with rigid end diaphragms subjected to opposing normal point loads through its center (see

Figure 4.12). The radius of the cylinder isR = 300.0. This problem tests the ability to

model deformation caused by bending and membrane stresses.The analytical solution yields

a displacement of1.8248 × 10−5 under the load ofF = 1 (67, p. 217). The results of using

elements S3 and T6 are from (39).

L/2 L/2

L/2 L/2

R

F

F

L = 600.0
R = 300.0
h = 3.0
E = 3.0 · 106

µ = 0.3
F = 1.0

Figure 4.12 Pinched cylinder.

The convergence of our method to the analytical solution is shown in Figure 4.13, along

with those ofABAQUSandANSYS. The vertical axis represents the deflection at the point
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Figure 4.13 Convergence of the displacement under load for the pinched cylinder
in Figure 4.12.

of contact normalized over the analytical displacement value. The normalized maximum dis-

placement converges to1 as the number of degrees of freedom increases, which means that

the solutions converge to the analytical value.

To compare the rates of convergence of the three methods, denote byn the number of

degrees of freedom in a finite element mesh, and byr the relative error. The relationship

betweenr andn is perhaps best illustrated by plottinglog(r) againstlog(n). If r = np, then

log(r) = p log(n), so the relationship betweenlog(r) and log(n) is linear with the slopep.

Therefore, the rate of convergence may be conveniently measured by the slopep. As shown

in Figure 4.14, this slope of our method is approximately−2, which means the relative error

decays roughly at the rate of1
n2 . In other words, the errorr decreases by a factor of4 with

every doubling of the number of degrees of freedomn. In comparison, the relative errors of

both S3 and T6 decay roughly at the rate of1
n
. The convergence rate of our method is an order

of magnitude higher than those ofABAQUSandANSYS.7

7Although both S3 and T6 converge monotonically to the reference solution as reported in (39), T6 does so
more slowly due to severe membrane locking.
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Figure 4.14 Rates of convergence.

4.5.4 Algebraic Surface

Simulation test under linear elasticity is also conducted on a monkey saddle. It is worthy

of note that classical shell theory does not directly apply to the shape which does not have

a known parametrization along the lines of curvature. The boundary condition requires that

its edge is clamped during the deformation. The result generated by our method is shown in

Figure 4.15. General mathematical surfaces, not easily modeled using the classical theory, are

well in the application range of our method.

4.6 Experiment

The experimental setup (shown in Figure 4.16) includes an Adept Cobra 600 manipulator,

a three-fingered BarrettHand, and a NextEngine’s desktop 3-Dscanner (accuracy 0.127mm).

Every finger of the BarrettHand has a strain gauge sensor that measures contact force. To

model point contact8, a pin is mounted on each of the two grasping fingers. A triangular

8assumed between an object and a BarrettHand finger in this chapter.
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x3 − 3xy2 = 5000z

(x, y) ∈ [−0.05, 0.05]
×[−0.05, 0.05]

h = 0.001
E = 5.0 · 106

µ = 0
F = 1.0

Figure 4.15 Deformations of a monkey saddle. The maximum displacement un-
der point load is0.019m.

Pin

BarrettHand Fingertip

Tennis Ball

Adept Robot Open End

Scanner

Figure 4.16 Experimental setup with a tennis ball.
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mesh model of a deformed surface due to finger contact is generated by the scanner. We

measure the modeling accuracy by matching the deformed surface from computation against

the corresponding mesh model and averaging the distances from the mesh vertices to the

deformed surface.9

4.6.1 Tennis Ball — Linear vs. Nonlinear Elasticities

For comparison, we have conducted an experiment on a tennis ball grasped at antipodal po-

sitions by the BarrettHand (see Figure 4.16). The rubber ballhas an outer diameter of65.0mm

and thickness of2.5mm. The Young’s modulus of the rubber is approximated as1MPa, and

its Poisson’s ratio approximated as0.5. Two subdivision-based displacement fields, one for

each finger contact, are used. Each field is defined over a45mm×45mm patch, which is large

enough to describe the deformed area based on our observation.

The results are described in Table 4.1. In the table, each rowcorresponds to one instance

of deformation. The first column in the table lists the force exerted by each finger. The second

column (consisting of two subcolumns) lists the deformed shapes produced by the scanner.

The third and fourth columns present the corresponding deformations computed according to

the nonlinear and linear elasticity theories, respectively.

From the table, the nonlinear modeling results have smallererrors than the linear modeling

results in three out of four rows, all corresponding to largedeformations. In the first row, the

two simulation results have comparable errors, which suggests that the deformation is within

the range of linear elasticity. Starting from the second row, the two methods generate shapes

that are visibly different from each other. In the second instance, the shape generated by the

nonlinear method has an obvious dent comparable to the one onthe real shape shown to the

left, whereas the shape by the linear method to the right hardly shows any dent. We see that the

9We select a small underformed area on the computed surface byobservation. Pick a vertex from the area,
then place it at a vertex on the scanned mesh model. Align their normals, and rotate the small area to find the best
match. Iterating over all vertices of the scanned mesh modelwill register the computed shape after deformation
onto the scanned shape.
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scanned deformation nonlinear deformation linear deformation
force measured average average

shape max disp. shape error shape error
(N) (mm) (mm) (mm)

10.63 2.56 0.31 0.30

16.50 6.05 0.62 0.85

20.37 9.12 0.81 2.0

21.48 10.27 0.65 2.37

Table 4.1 Comparisons between linear and nonlinear deformations on a tennis
ball.
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larger the force, the bigger the error of linear deformation. The error of nonlinear deformation

does not increase with the force.

Grasping causes deformations in the regions around the contact while the rest of the surface

hardly deforms. Figure 4.17 shows the deformed regions, under the finger force of21.48N,

superposed onto the scanned undeformed model of the tennis ball. The figure corresponds to

the fourth instance in Table 4.1. The red curves, one at the top and the other at the bottom, mark

the borders of these deformed regions. The measured maximumdisplacement of10.27mm is

achieved at two marked points. Due to symmetry, we only display the top deformed area.

We see that the two antipodal contact points move closer under the force exerted by the two

fingers. The scanned deformations on the tennis ball and the nonlinear results are within 7%

of each other from the fourth instance in Table 4.1.

Max deformation points

Figure 4.17 Deformed tennis ball under grasping. The pointsin contact with the
fingers have maximum displacements of10.27mm.

4.6.2 Rubber Duck — Free-form Object

The surface of a real object usually has two varying principal curvatures. To demonstrate

the ability to model free-form objects, we conduct an experiment on a rubber duck toy. The

rubber has thickness2.0mm. Its Young’s modulus is approximated as1MPa, and Poisson’s

ratio as0.5.

Figure 4.18 displays the rear and the front views of the deformed rubber duck under an
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antipodal grasp by the BarrettHand. The average modeling error is 0.58mm, which is within

7.4% of the scanned maximum displacement8.56mm.

Figure 4.18 Deformed rubber duck under an antipodal grasp with force of
19.22N exerted by each finger. Two images show deformations from
a rear view (left) and a front view (right) with maximum displace-
ment (marked by dark points) of8.56mm and6.73mm, respectively.

4.7 Discussion

It is worth mentioning that our invariant-based formulation is mathematically equivalent

to the tensor-based one in (28). However, ours provides muchmore clear geometric meanings

to shell strains, which are buried in the latter formulationdue to its complicated symbolism of

tensor calculus.

In nonlinear modeling, an evolutionary algorithm rarely works due to its high dimensional

search space. The conjugate gradient method improves the computational efficiency with a

good initial guess obtained by interpolation over the localneighborhood.

Compared to commercial packages, our method achieves a higher convergence rate. Faster

convergence rate implies a smaller number of mesh nodes needed, which in turn results in

faster running time. The invariant-based formulation of thin shell strains increase accuracy

and works with any parametrization. In contrast, commercial packages either approximate
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strains in Cartesian coordinates, or use thick shell theory which could easily lead to shear and

membrane locking when applied to thin shells.

There are two sources of errors in the simulation. The first isdue to the discrepancy be-

tween the original surfaceσ(u, v) and its “deformed” shapeσ′(u, v) as a subdivision surface

under no deformation. This is because subdivision surfacescannot represent some curved

shapes exactly. The second source comes from modeling the deformation of the subdivision

surface, a process that simplifies a variational problem (offinding a shape function satisfying

Euler’s equation) to that of determining a finite number of degrees of freedom.

In our experiment, several factors have affected the modeling accuracy: occlusion to the

scanner, the scanner accuracy, and errors in the force readings (due to drifting of the zero points

of the BarrettHand’s strain gauge sensors). In the tennis ball experiment, the air pressure inside

the ball also affects its deformation but is not modeled.

In a real situation, as the object deforms, the surface region in contact with the a robot

finger usually grows larger and the load distribution changes. Modeling is expected to im-

prove by considering area contacts and distributed loads. Installing tactile array sensors on the

BarrettHand can dynamically estimate contact regions on thefingertips.
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CHAPTER 5. TOWARD TWO-FINGER GRASPING OF

DEFORMABLE CURVE-LIKE OBJECTS

This chapter gives out a framework for two-finger squeeze grasp analysis. Two-finger

grasping is widely used due to its simplicity and robustness. Point contacts with friction are

considered. Modeling is based on the nonlinear elasticity theory, which is more accurate for

large deformations compared with its linear counterpart. The evolution of contact friction

cones could be characterized under the minimum potential energy criterion. Even if the two

fingers were not initially placed at “graspable” positions,the contact friction cones may have

rotated, resulting in an equilibrium grasp.

All objects addressed in this chapter are physically linear(governed by Hooke’s law) but

geometrically either linear or nonlinear. In the latter case, the linear elasticity theory is no more

applicable. These objects are “closed curves” in the sense that their cross sections normal

to the tangential direction are very small. For simplicity,we also assume that the physical

property in the width direction is isotropic.

5.1 Grasp Modeling

Under external loads, an elastic curved object exhibits twoprincipal behaviours: stretching

and bending. Its deformation model is a lower dimensional analogue to the thin shell model

in (36).

As shown in Figure 5.1, a thin curved object in our consideration is swept out by a constant

cross section along a 2D closed curvex(u) referred to as themiddle curve. The cross section



www.manaraa.com

61

has widthw and heighth. This is essentially a degenerated shell with only one dominating

dimension. To make physical sense, the curve is parametrized by arc length. Computation

will easily carry over to arbitrary-speed curves.

n

t

initial shape

'n

't

deformed shape

p
q

'p

'q

w

h

cross section

Figure 5.1 Deformation of a curved shape with rectangular cross section. The
pointp in the shape is along the direction of the normaln at the point
q on the middle curve. Pointsp′ andq′ are their displaced locations.

We follow Kirchhoff’s assumption that lines initially normal to the middle curve remain

straight after deformation, do not change their lengths, and remain normal to the middle curve

of the deformed geometry.

Every pointp in the curved shape is along the normal direction of some point q = x(u)

on the middle curve. Lett andn be the unit tangent and normal atq, respectively. We have

p = q + yn, wherey is the signed distance fromq to p. The displacementδ(u) of q is

described as

δ(u) = α(u)t + β(u)n. (5.1)

Under a load, at the pointp, the extensional strainǫ is

ǫ = t[α] + (∇tn · t)β = α′ − κβ, (5.2)

wheret[α] is thedirectional derivativeof α with respect tot, and∇tn is thecovariant deriva-

tive which measures the rate of change of the normaln along the middle curve atq. Denote
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by φ the amount of rotation of the normal towardt. We have

φ = −t[β] + (∇tn · t)α = −β′ − κα. (5.3)

The change in curvature, which accounts for the change rate of the angleφ along the direction

t, is

ζ = t[φ] = −β′′ − κ′α − κα′. (5.4)

Denote byσ the stress, and byε the strain at any point. Lete be the modulus of elasticity,

or Young’s modulus. We have

σ = e(ǫ + yζ),

ε = ǫ + yζ.

Then the energy density is

dUǫ =
1

2
σεdV =

1

2
e(ǫ + yζ)2dV. (5.5)

The strain energy can be obtained as follows.

Uǫ =

∫

V

dUǫ

=
1

2

∫

V

e(ǫ + yζ)2wdyds

=
1

2
ew

∫ L

0

∫ h

2

−h

2

(ǫ + yζ)2dyds

=
1

2
ew

∫ L

0

(hǫ2 +
h3

12
ζ2)ds. (5.6)

The component linear in the thicknessh represents the extensional energy, and the cubic

component represents the bending energy. We cannot consider stretching only for a closed

curve because it will always result in change in curvature (and bending) unless the curve is a

line segment.



www.manaraa.com

63

It is well known that large deformations need to be describedby the nonlinear elasticity

theory. In the following, we present a geometrically exact model expressed in terms of geo-

metric invariants. This model characterizes large strainsand deformations, and is transformed

from the nonlinear shell theory (79).

First, we have the relative elongation of an infinitesimal line element starting atq as:

ε̄ = ǫ +
1

2
(ǫ2 + φ2). (5.7)

The following term characterizes the variation of the curvature of the middle curve along the

tangential direction:

ζ̄ = (1 + ǫ)(t[φ] + (∇tn · t)ǫ) − φ(t[ǫ] − (∇tn · t)φ). (5.8)

where

κ11 = t[φ] + (∇tn · t)ǫ

= −β′′ − κ′α − 2κα′ + κ2β,

κ13 = t[ǫ] − (∇tn · t)φ

= α′′ − κ′β − 2κβ′ − κ2α.

Replacing the corresponding terms in (4.49), the strain energy is

Ūǫ =
1

2
ew

∫ L

0

(hε̄2 +
h3

12
ζ̄2)ds. (5.9)

In case of a small deformation, equation (5.9) is essentially the same to (5.6).

5.1.1 Discretization

Denote byUq the potential of the external load. The total potential energy is

U = Uǫ − Uq.

The necessary condition for equilibrium is that the first variation δU is zero. Even in the

simplified case of pure bending (i.e.ǫ = 0), calculus of variations will set up a sixth order
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differential equation that has little hope to be solved exactly. Discretizing the object into finite

elements reduces the displacement from a continuous field toa discrete one, allowing the

application of numerical techniques to the potential energy minimization.

The curvature termζ11 in (5.9) has second order derivative of the displacement. Inorder

to guarantee finite potential energy, the basis functions should be square integrable, and their

first and second-order derivatives should also be square integrable. The cubic B-spline basis

functions meet this requirement. It can be considered as thecounterpart of the subdivision

surface used in (79).

Let u ∈ [0, 1], the four basis functions are

b1 = (−u3 + 3u2 − 3u + 1)/6,

b2 = (3u3 − 6u2 + 4)/6,

b3 = (−3u3 + 3u2 + 3u + 1)/6,

b4 = u3/6.

Figure 5.2 shows four consecutive points along the middle curvex(u). The position of any

1p 2p 3
p

4
p

Figure 5.2 Discretization.

point x(u) in the shade interval[p2,p3] can be represented in terms of the positions of these

two end points plus two neighboring control points as

x(u) = b1p1 + b2p2 + b3p3 + b4p4. (5.10)

Its displacement is then a linear combination of the displacementsδi of these control points:

δ(u) = b1δ1 + b2δ2 + b3δ3 + b4δ4. (5.11)

Obviously, any control point influences the domain[−2.0, 2.0]. As shown in Figure 5.3,

the second-order derivative is continuous. In our implementation, both the geometry (5.10)
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and the displacement field (5.11) are discreized using thesecubic B-spline basis functions.

This leads to the so-calledisoparametricfinite element, which is preferred in the FEM field.

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

basis function

1st derivative

2nd derivative

Figure 5.3 Concatenation of basis functions and the first and second-order
derivatives.

5.1.2 Nonlinear Energy Minimization

We rewrite the strain energyUε in (5.9) into a matrix form:

Uǫ = ∆
T Ks∆, (5.12)

where∆ = (δT
1 , . . . , δT

m)T , m is the number of control points, andKs is the stiffness matrix.

Assume there areN elements in total. LetSk denote thekth element. Number the neigh-

boring points locally so they are atx1, · · · ,x4, respectively. The displacement field(α, β)T of

Sk is decided byδT
1 , . . . , δT

4 , whereδi = (δ2(i−1)+1, δ2(i−1)+2)
T , for 1 ≤ i ≤ 4. Bothα andβ

are linear combinations of these8 variables.

Next, we illustrate the computation of the strain energy (5.9) over the integral summand

involving ε2
11. Let t = (tx, ty)

T , andn = (nx, ny)
T . The forms ofNls are given as, for
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1 ≤ i ≤ 4, 1 ≤ j ≤ 2,

N2(i−1)+j = (
∂bi

∂u
tq + bi

∂tq
∂u

)(1 +
1

2
ǫ − 1

2
φ)

+ (∇tn · t)binq(1 +
1

2
ǫ +

1

2
φ).

whereq is x or y whenj = 1, 2, respectively, andbis are the basis functions. The element

stiffness matrixKε2

11 due to elongation is a8 × 8 matrix with entries

K
ε2

11

lp =
1

2
ew

∫

Sk

hNlNpds. (5.13)

Similarly, we construct the element matrix due to bendingKζ2

11. The stiffness matrix for the

element is

KSk
= Kε2

11 + Kζ2

11 .

We can assembleKSk
into Ks by the standard procedure.

Denote byq(u) the load field, which has potential

Uq =

∫ L

0

q(u) · δ(u) ds = ∆
T Q, (5.14)

whereQ is the vector of all nodal forces. The total potential energyis

U = Uǫ − Uq = ∆
T Ks∆ − ∆

T Q, (5.15)

where the strain energyUǫ is given in (5.9). The entries ofKs are functions of the unknown

displacements. The nonlinear minimization ofU is performed iteratively.

5.1.3 Boundary Condition

Boundary conditions are handled in a degenerate way comparedwith its thin shell counter-

part described in (12). For a boundary vertex, one artificialvertex is introduced. The boundary

conditions are shown in Figure 5.4. Vertex 3 is artificial andpositioned atx3 = 2x2 − x1,

wherex1 andx2 are the positions of the vertices 1 and 2.
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boundary
point

artificial point

1
3

2

Figure 5.4 Displacement and rotation fixed,δ1 = δ2 = δ3 = 0; displacement
fixed and rotation free,δ2 = 0, δ3 = −δ1; displacement and rotation
free,2δ2 = δ3 + δ1.

5.1.4 An Example

We proceed to show the effectiveness of our modeling technique by running a beam test

case (68, p. 741). This example involves a straight beam (E = 3 · 107psi) under uniformly

distributed load. The beam is clamped at both ends. It has length 100.0in, width 1.0in, and

height 1.0in. Figure 5.5 plots the maximum deflection against the load.It shows that

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Load (lb/in)

D
ef

le
ct

io
n 

(in
)

+ nonlinear result
* linear result
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Figure 5.5 Beam under distributed load and clamped at both ends.

geometrically exact model provides a higher accuracy for large load.1

1The small difference between our nonlinear result and the reference one is because the latter considers
bending only.
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5.2 Grasp

A grasp of a rigid object achieves force closure if it can resist an arbitrary external wrench

(force plus torque). Nguyen’s (54) result on two-finger grasping under point contacts in the

plane states that such a grasp is force-closure if the intersection of the two contact friction

cones contains the line segment connecting the two contact points.

For deformable objects,grasp analysis and synthesis are no longer purely geometricprob-

lems. Due to the highly nonlinear nature of the potential energy form (5.15), determining the

deformed shape analytically is difficult, if not impossible. This points us to start our investi-

gation numerically to predict whether a grasp can be performed successfully.

We assume that deformation happens instantaneously such that the grasping forces do

not vary during the process, and no velocity of the object hasbuilt up. It is common to

ignore dynamics in modeling deformations using energy-based methods. Here it allows us to

treat the grasping problem quasistatically. The outcome ofa grasp on an object can then be

determined based on the post-deformation geometry of the object and the original forces now

applied at the current boundary locations. More precisely,a pre-deformation finger placement

is considered a grasp if the post-deformation finger placement would be force-closure on a

rigid object with the same geometry as that of the deformed shape.

Specifically, we consider asqueeze graspG(u, v) with the two fingers positioned at

p = x(u) andq = x(v) on the curve. As shown in Figure 5.6, we positionp at the origin and

q on the positivey-axis.

We assume that the bottom finger atp does not move while the top finger squeezes the

curve towardp with a force of magnitudef . The effect will be equivalent to that generated by

moving the two fingers toward each other, but this constrainton the lower finger is needed here

for solution of the deformed shape. Note that the movement ofthe top finger is constrained

to be on they-axis. Slips between the fingers and the curve can happen during deformation

when friction is not enough to prevent such motions from happening.
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q

exerting 

force

reaction 
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Figure 5.6 Grasping computation model. The displacement and rotation at con-
tact pointp are fixed, while pointq can move freely.

The applied squeeze force atq must stay inside the friction cone. It points atp if the

line segmentpq is contained inside the cone. Otherwise it stays on the edge of the cone

which forms a smaller angle withpq. The reaction force exerted by the top finger atp can be

computed after the deformation using FEM. It needs to stay inside the friction cone atp in the

post-deformation state for the grasp to be achieved.

Under the above formulation, the deformation of the curve (and thus the success of the

grasp) is completely determined by the magnitudef of force exerted by the upper finger. The

force magnitude isfeasibleif it results in equilibrium of the curve in the post-deformation

state.

Figure 5.7 shows the pre- and post-deformation states of a grasp. The computation of the

Figure 5.7 A deformable grasp.

post-deformation will be detailed in Section 5.2.1. Here wenote that the line segment con-

necting the two contact points was initially outside the topfriction cone, but becomes inside
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with the cone rotating counterclockwise under deformation. The original finger placement

would not be a force-closure or even equilibrium grasp on a rigid object of the same shape.

5.2.1 Grasp Testing

In Figure 5.8, the finger contact pointsp andq are represented by pointsp0 andq0. Points

p−1, p1, q−1 andq1 are in the immediate neighborhood of pointsp0 andq0, respectively.

Based on the boundary condition handling method described inSection 5.1.3, if we consider

0
p1−−−−p 1

p

0
q1−−−−q 1

q

Figure 5.8 Points near the finger contact points.

p0 as a boundary point,p−1 andp1 are artificial points to each other. Recall thatδ represents

the displacement at some point, we can formulate the constraints as

δ−1 = δ0 = δ1 = 0. (5.16)

They constrain the translation and rotation of the curve atp so that a unique FEM solution

exists. These constraints indeed form a minimum set of conditions that must be satisfied in

two dimensions for the computation.

In Figure 5.9, pointsp andq are initial contact positions. After deformation,q moves to

q′. Since the top finger can only move along they-axis toward the origin where the bottom

finger is placed, the new top contact position is pointq′
1. Finally, we check if the line segment

connectingp andq′
1 lies inside the two corresponding friction cones. The graspis successful

if so.
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Figure 5.9 Quasi-static analysis. Pointsp and q are initial contact positions,
whereas, pointsp andq′

1 are post-deformation ones.

5.2.2 Minimum Graspable Force Magnitude

Denote byG(u, v) a squeeze grasp as shown in Figure 5.6 with a finger placement at

locationsp = x(u) andq = x(v). A force of magnitudef exerted by the top finger is

feasibleif it results in a grasp. We can find a minimum force magnitudefmin such that the

curve can be grasped as follows. Start with an initial value and double it at each step until the

grasp is achieved or will not be so. (Observe the rotation of the top contact friction cone to

determine it is toward the bottom contact friction cone.) Use bisection to findfmin.

Table 5.1 lists three instances of grasping. The object has length241.6mm, width1.0mm,

and height1.0mm. The value of its Young’s modulus is100.0Pa. The value of the friction

coefficient is0.4. The first column in the table presents the initial configurations. The second

column lists the results after deformations. The third column shows the minimum grasp force

magnitudes. In the table, each row corresponds to one instance of grasping.

To determine the influence of Young’s modulus onfmin, we recall that the deformation
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before grasping after grasping min grasping force

∼ 0N

0.2N

0.5N

Table 5.1 Three grasps of a deformable object with two fingers.

computation is to minimize

1

2
ew

∫ L

0

(hε2
11 +

h3

12
ζ2
11)ds − f · δ.

If we change the value of Young’s modulus frome to ce, the problem is equivalent to minimize

c

(

1

2
ew

∫ L

0

(hε2
11 +

h3

12
ζ2
11)ds − f

c
· δ
)

.

This implies that Young’s Modulus is a scaling factor. the minimum grasp force magnitude

for the valuece of Young’s Modulus iscfmin.

5.2.3 Prolonged Graspable Segment

A graspG(u, v) at locationsx(u) andx(v) of a curvex is achievable if the set of feasible

grasping forces for the finger placement is nonempty. A domain interval[vl, vr] of the curve

defines agraspable boundary segmentfor p = x(u) if every graspG(u, v), v ∈ [vl, vr] is

achievable. For a rigid object, finding such an interval depends only on local geometry, and

the computation is straightforward.
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Figure 5.10 shows grasps of a deformable object and of a rigidone with the same shape.

For the purpose of comparison, the deformable object is drawn in its original shape and coin-

cides with the rigid object. One finger is fixed atp in all the grasps. The arc
⌢

dldr represents the

segment of feasible locations where the top finger can be positioned to grasp the deformable

object, while the arc
⌢

slsr represents the segment for the rigid object. The graspable segment

is enlarged on the deformable object due to the change in contact geometry. Generally, defor-

mation helps grasping.

p

l
d

l
s

rr
ds ====

Figure 5.10 Increased graspable segments. The arc
⌢

dldr is for the deformable
object, and the arc

⌢
slsr is for the rigid one.

5.2.4 Disturbance

Robustness of a grasp of a deformable object has different implications than that of a rigid

one. In the latter case, every finger can exert a force of any magnitude inside the contact

friction cone for a non-empty null space of the grasp matrix.Equivalently, an arbitrary dis-

turbance force can be resisted. In contrast, the magnitude of a disturbance force applied to a

grasped deformable object is bounded. Otherwise, the graspwill be broken.

To illustrate the above, consider an object grasped by two fingers. An exerted disturbance

force will result in reaction forces at the two finger contacts, which can be determined after the

respective displacements are computed under, say, the linear elasticity model. At each finger

contact, this reaction force is combined with the original grasping force. The composite force

must lie inside the corresponding contact friction cone.
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Figure 5.11 Disturbance model. Pointsp andq are the finger contacts. Pointw

is the disturbance contact.

As shown in Figure 5.11, an object is grasped at pointsp andq. It has the same mechanical

properties as the one in Table 5.1. A disturbance force is nowapplied at the pointw. It lies

inside the friction coneC at the point of application. Denote byθi the angle between the force

direction and one edge of the friction cones. Figure 5.12 shows that the composite finger

forces atp andq change their directions as the disturbance force varies from one edge to the

other of the friction coneC. During the change, the magnitude of the disturbance force stays

constant.
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Figure 5.12 Evolution of the finger force directionsθ1 and θ2 to maintain the
grasp in reaction to the change in the direction of the disturbance
force from0 to 0.76 (radian) while the magnitude of the disturbance
force stays constant.

In Figure 5.13, the direction of the disturbance force is fixed but its magnitude increases.
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Both θ1 andθ2 will exceed2 tan−1(µ). The grasp is broken whenθ1 first does so.
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Figure 5.13 Evolution ofθ1 andθ2 as a result of varying disturbance force mag-
nitude with the disturbance force’s direction unchanged.

5.3 Pure Bending of a Closed Curve

In real world, there is one physical response known as inextensional bending such that the

membrane strain tends to vanish. In this section, solutionsfor pure bending of a closed curve

will be presented.

As shown in Figure 5.14, a curve parametrized by arc lengths is fixed ats = s1. A force

of magnitudef is exerted ats = 0 in the positive direction ofx-axis. In this section, a calculus

of variation solution will be presented.2

5.3.1 Pure Bending

If we consider bending only, extensional strain is zero everywhere

α′ − κβ = 0. (5.17)

We can immediately get

α′ = κβ,

2provided by my thesis advisor Yan-Bin Jia.
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Figure 5.14 A curve fixed ats = s1 and squeezed ats = 0 toward the positive
direction ofx-axis.

β =
α′

κ
.

Therefore, the derivatives ofβ can be represented in terms ofα as:

β′ =
α′′

κ
− κ′

κ2
α′,

β′′ =
α′′′

κ
− κ′

κ2
α′′ − κ′

κ2
α′′ − (

κ′′

κ2
− 2

κ′2

κ3
)α′

=
α′′′

κ
− 2

κ′

κ2
α′′ + (2

κ′2

κ3
− κ′′

κ2
)α′.

Substituting them into (5.4):

ζ = −β′′ − κ′α − κα′

= −κ′α − (κ + 2
κ′2

κ3
− κ′′

κ2
)α′ + 2

κ′

κ2
α′′ − α′′′

κ
.

Obviously, ζ is a function ofα and its first three derivatives. Subsequently, the strain

energy is

Uǫ =
ewh3

24

∫ L

0

H(α, α′, α′′, α′′′)ds,

whereH = ζ2, e is Young’s modulus,w andh are the width and height of the curve’s cross

section, respectively.
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In the case of a circle with radiusr, κ = 1
r
. We have

ζ = −α′

r
− rα′′′.

5.3.2 Boundary Conditions

The points1 does not move means that

α(s1) = 0, (5.18)

and

β(s1) = 0. (5.19)

For bending only, equation (5.19) is equal to

α′(s1) = 0. (5.20)

At the same time, the post-deformation shape of the curve should be closed, therefore

α(0) = α(L), (5.21)

β(0) = β(L). (5.22)

Equation (5.22) also means:

α′(0) = α′(L). (5.23)

We also require that the curve after deformation has continuous tangent ats = 0. Denote

by x(s) a unit-speed curve before the deformation. After the deformation, it becomes

x(s) + αt + βn

with new tangent

(1 + α′ − κβ)t + (κα + β′)n = t + (κα + β′)n.
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Becauseα, α′ andβ already have equal values ats = 0 ands = L, we only need to exert the

constraintβ′(0) = β′(L). Differentiating equation (5.17) leads to

α′′ − κ′β + κβ′ = 0.

Subsequently, it is equivalent to exert the constraint

α′′(0) = α′′(L).

5.3.3 Variational Solution

The load potential is

W = f(α(0)cosφ − β(0)sinφ) (5.24)

= f(α(0)cosφ − α′(0)

κ(0)
sinφ). (5.25)

Then the potential energy is

U = Ẽ

∫ L

0

H(α, α′, α′′, α′′′)ds − f(α(0)cosφ − α′(0)

κ(0)
sinφ). (5.26)

Since there are five constraints, we consider variation

α + ε1η1 + ε2η2 + ε3η3 + ε4η4 + ε5η5 + ε6η6,

whereηis, for1 ≤ i ≤ 6, are arbitrary functions. To satisfy the constraints, we must have

J1(ε1, ε2, ε3, ε4, ε5, ε6) ≡
5
∑

i=1

εiηi(s1) = 0, (5.27)

J2(ε1, ε2, ε3, ε4, ε5, ε6) ≡
5
∑

i=1

εiη
′
i(s1) = 0, (5.28)

J3(ε1, ε2, ε3, ε4, ε5, ε6) ≡
5
∑

i=1

εi(ηi(L) − ηi(0)) = 0, (5.29)

J4(ε1, ε2, ε3, ε4, ε5, ε6) ≡
5
∑

i=1

εi(η
′
i(L) − η′

i(0)) = 0, (5.30)



www.manaraa.com

79

J5(ε1, ε2, ε3, ε4, ε5, ε6) ≡
5
∑

i=1

εi(η
′′
i (L) − η′′

i (0)) = 0. (5.31)

Replace theα related terms in (5.26) withα + ε1η1 + ε2η2 + ε3η3 + ε4η4 + ε5η5 + ε6η6. Let

U∗(ε1, ε2, ε3, ε4, ε5, ε6) ≡ U(ε1, ε2, ε3, ε4, ε5, ε6) +
5
∑

i=1

λiJi(ε1, ε2, ε3, ε4, ε5, ε6). (5.32)

SinceU∗ achieves an extremum atε1 = ε2 = ε3 = ε4 = ε5 = ε6 = 0, its partial derivatives

with respect toεis, for1 ≤ i ≤ 6, must all vanish.

∂U∗

∂εi

|εi=0 = Ẽ

∫ L

0

(Hα − dHα′

ds
+

d2Hα′′

ds2
− d3Hα′′′

ds3
)ηids

+ Ẽ(Hα′ − dHα′′

ds
+

d2Hα′′′

ds2
)ηi|L0 + Ẽ(Hα′′ − dHα′′′

ds
)η′

i|L0 + ẼHα′′′η′′
i |L0

− fcosφηi(0) + f
sinφ

κ(0)
η′

i(0) + λ1ηi(s1) + λ2η
′
i(s1) + λ3ηi|L0 + λ4η

′
i|L0 + λ5η

′′
i |L0 .

Merging terms with the same factors leads to:

∂U∗

∂εi

|εi=0 = Ẽ

∫ L

0

(Hα − dHα′

ds
+

d2Hα′′

ds2
− d3Hα′′′

ds3
)ηids

+ (Ẽ(Hα′ − dHα′′

ds
+

d2Hα′′′

ds2
) + λ3)ηi|L0 − fcosφηi(0)

+ (Ẽ(Hα′′ − dHα′′′

ds
) + λ4)η

′
i|L0 + f

sinφ

κ(0)
η′

i(0)

+ (ẼHα′′′ + λ5)η
′′
i |L0 + λ1ηi(s1) + λ2η

′
i(s1).

Then we easily setλ1 = λ2 to eliminate the two terms involvings1:

∂U∗

∂εi

|εi=0 = Ẽ

∫ L

0

(Hα − dHα′

ds
+

d2Hα′′

ds2
− d3Hα′′′

ds3
)ηids

+ (Ẽ(Hα′ − dHα′′

ds
+

d2Hα′′′

ds2
) + λ3)ηi|L0 − fcosφηi(0)

+ (Ẽ(Hα′′ − dHα′′′

ds
) + λ4)η

′
i|L0 + f

sinφ

κ(0)
η′

i(0)

+ (ẼHα′′′ + λ5)η
′′
i |L0 .

Theorem 2. Euler’s equation must be satisfied:G ≡ Hα − dH
α′

ds
+

d2H
α′′

ds2 − d3H
α′′′

ds3 = 0.

Proof. We first show thatG = 0 at s 6= 0, L by contradiction. First, we assume thatG > 0

at somes without losing generality. Then there exists someε > 0 such thatG 6= 0 over



www.manaraa.com

80

(s − ε, s + ε). We can makeε small enough such that0,L /∈ (s − ε, s + ε). Now construct a

functionηi such thatηi(t) > 0 over(s − ε, s + ε) andηi(t) = 0 at other points in[0, L]. By

contradiction it follows that

ηi(0) = ηi(L) = η′
i(0) = η′

i(L) = η′′
i (0) = η′′

i (L) = 0.

The partial derivative reduces to

∂U∗

∂εi

|εi=0 = Ẽ

∫ L

0

(Hα − dHα′

ds
+

d2Hα′′

ds2
− d3Hα′′′

ds3
)ηids > 0.

Hence a contradiction.

By continuity,G = 0 must also hold ats = 0,L.

The partial derivative further reduces to

∂U∗

∂εi

|εi=0 = (Ẽ(Hα′ − dHα′′

ds
+

d2Hα′′′

ds2
) + λ3)ηi|L0 − fcosφηi(0)

+ (Ẽ(Hα′′ − dHα′′′

ds
) + λ4)η

′
i|L0 + f

sinφ

κ(0)
η′

i(0) + (ẼHα′′′ + λ5)η
′′
i |L0 .

Now we letηi(s) = C 6= 0 be a constant function. All derivatives vanish, resulting in

(Ẽ(Hα′ − dHα′′

ds
+

d2Hα′′′

ds2
) + λ3)|L0 C − fcosφC = 0.

The two terms involvingλ3 cancel each other, yielding

(Hα′ − dHα′′

ds
+

d2Hα′′′

ds2
)|L0 =

fcosφ

Ẽ
.

Similarly, we letηi(s) = sin2πs
L

with its values and second derivatives vanishing ats =

0,L. We end up with the equation

(Ẽ(Hα′′ − dHα′′′

ds
) + λ4)|L0

2π

L
+ f

sinφ

κ(0)

2π

L
= 0.

Again,λ4 gets eliminated, yielding

(Hα′′ − dHα′′′

ds
)|L0 = −f

sinφ

Ẽκ(0)
.
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Finally, we chooseηi(s) = cos2πs
L

. Then all first derivative terms disappear. The first two

terms involvingηi(0) andηi(L) cancel each other becauseηi(0) = ηi(L) and

(Hα′ − dHα′′

ds
+

d2Hα′′′

ds2
)|L0 =

fcosφ

Ẽ
.

Hence we have

Hα′′′|L0 = 0.

To summarize, the curve after deformation satisfies the differential equation

Hα − dHα′

ds
+

d2Hα′′

ds2
− d3Hα′′′

ds3
= 0 (5.33)

subject to the following constraints

(Hα′ − dHα′′

ds
+

d2Hα′′′

ds2
)|L0 =

fcosφ

Ẽ
, (5.34)

(Hα′′ − dHα′′′

ds
)|L0 = −f

sinφ

Ẽκ(0)
, (5.35)

Hα′′′|L0 = 0, (5.36)

α|L0 = 0, (5.37)

α′|L0 = 0, (5.38)

α′′|L0 = 0, (5.39)

α(s1) = 0, (5.40)

α′(s1) = 0. (5.41)

5.3.4 Unit Circle

Consider a unit circle under the applied force at its leftmostpoint in the direction of the

positivex-axis. In this case,

φ =
3π

2
,

L = 2π,

s1 = π,
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H = (α′ + α′′′)2,

Hα′ = Hα′′′ = 2(α′ + α′′′),

Hα = Hα′′ = 0.

The differential equation and boundary conditions are simplified with substitution of the

above expressions.

α′′ + 2α(4) + α(6) = 0. (5.42)

subject to

α′ + 2α′′′ + α(5)|2π
0 = 0, (5.43)

α′′ + α(4)|2π
0 = − f

2Ẽ
, (5.44)

α′ + α′′′|2π
0 = 0, (5.45)

α|2π
0 = 0, (5.46)

α′|2π
0 = 0, (5.47)

α′′|2π
0 = 0, (5.48)

α(π) = 0, (5.49)

α′(π) = 0. (5.50)

Substitute (5.45) into (5.43), (5.48) and (5.47) into (5.44) and (5.45), respectively:

α′′′ + α(5)|2π
0 = 0, (5.51)

α(4)|2π
0 = − f

2Ẽ
, (5.52)

α′′′|2π
0 = 0. (5.53)

Then we substitute (5.53) into (5.51):

α(5)|2π
0 = 0.

Finally, rewrite all conditions:

α|2π
0 = 0, (5.54)
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α′|2π
0 = 0, (5.55)

α′′|2π
0 = 0, (5.56)

α′′′|2π
0 = 0, (5.57)

α(4)|2π
0 = − f

2Ẽ
, (5.58)

α(5)|2π
0 = 0, (5.59)

α(π) = 0, (5.60)

α′(π) = 0. (5.61)

5.3.4.1 Simulation

This boundary problem is best solved using the finite difference method. We split the

interval[0, 2π] intoN equal parts, each of width∆ = 2π
N

. Since the differential equation (5.42)

is linear, using the scheme of central difference, it reduces to

αn+3 + (2∆2 − 6)αn+2 + (∆4 − 8∆2 + 15)αn+1 + (−2∆4 + 12∆2 − 20)αn

+(∆4 − 8∆2 + 15)αn−1 + (2∆2 − 6)αn−2 + αn−3 = 0, for n = 0, 1, · · · , N.

To solve this problem numerically, we need to introduce unknownsα−3, α−2, α−1, αN+1,

αN+2, andαN+3. We can eliminate these unknowns outside the interval wherethe original

problem is posed by exerting the boundary conditions (5.54)–(5.59). Finally, we will create a

system of linear equations which can be easily solved.

This bending only problem can also be solved using FEM. Denote byUq the potential of

the external load. We have

min
1

2
ew

∫ L

0

(hǫ2 +
h3

12
ζ2)ds − Uq,

subject to
1

2
ew

∫ L

0

hǫ2ds = 0.

Imposing the bending only constraint requires the use of Lagrange multipliers. The problem
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post-deformation

pre-deformation

x

y

(a)

post-deformation

pre-deformation

x

y

(b)

Figure 5.15 Deformation of a circle, (a) calculus of variations solution and (b)
FEM solution. It is anchored at rightmost point and squeezedat
leftmost point in the direction of the positivex-axis.
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reduces to

min
1

2
ew

∫ L

0

(hǫ2 +
h3

12
ζ2)ds − Uq + λ(

1

2
ew

∫ L

0

hǫ2ds).

Figure 5.15(a) shows the deformation of this circle obtained using calculus of variations.

Figure 5.15(b) shows the results using FEM. The mechanical properties are the same for both

methods. There is more cave-in for the calculus of variations solution. For an arbitrary shape

curve, calculus of variations will be very difficult to implement because of the complexity of

the high order differential equation. In comparison, FEM isapplicable to any shape without

increasing the complexity. Usually, energy minimization using FEM is numerically more

stable. Meanwhile, exerting boundary conditions is more straightforward in the FEM solution

compared with the calculus of variations one. Thus, FEM is preferred.
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CHAPTER 6. CONCLUSION AND FUTURE WORK

In this chapter, we summarize our work, review contributions, and discuss the needed

future work.

6.1 Conclusion

The first part of this thesis investigates deformable modeling of general shell-like objects.

First, we describe the linear and nonlinear shell theories independently of a shell’s middle

surface parametrization, making them applicable to arbitrary parametric shells (and thus to

freeform shells which are well approximated by spline or subdivision surfaces).1 Second, we

empirically compare our method with existing commercial software packages, establishing a

convergence rate an order of magnitude higher. Third, we experimentally compare the linear

and nonlinear elasticity theories in the context of a deformable object interacting with a robot

hand, confirming that the nonlinear theory is more appropriate given large deformations often

generated by the action of grasping.

Our modeling method is based on the physical theory of elasticity and experimental val-

idated. It could potentially influence interactive computer graphics on achieving higher real-

ism, especially on accurate computation of strain energy and deformation under applied force.

The second part of this thesis investigates two-finger squeeze grasp analysis of deformable

curve-like objects. Both linear and nonlinear thin shell theories are reduced to be applicable

1The parametric independent formulation of strains also makes it possible to treat shells described by implicit
equations, even though they are not common in practice.
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to thin curved objects, which are essentially degenerate shells. This deformation modeling

technique serves as the base for our analysis.

Under a squeeze grasp, the rotations of the finger contact friction cones depend on the

global geometry of the object rather than on the local contact geometry. It is very difficult, if

not impossible, to find a closed-form function that describes such a rotation in terms the force

magnitude. Grasp analysis is best carried out by numerical procedures via energy minimiza-

tion.

At some initially “not-graspable” positions, the squeeze force magnitude has to be above

certain threshold in order to grasp a deformable object. Deformation plays a positive role in

grasping of a deformable object. The set of “graspable” positions may increase compared to a

rigid object which has the same geometry with the pre-grasp state of the deformable one.

The ability to resist disturbance is quite different between a grasp of a deformable object

and that of a rigid one. With the magnitude of a disturbance force increasing, the grasp may

be broken for the deformable object. In comparison, any disturbance force can be resisted by

a force-closure grasp of the rigid object.

6.2 Future Work

Up to now, not many research efforts have been devoted to grasping of deformable objects.

This thesis provides our initial work in this area. Along this promising line of research, there

are several interesting and important future directions:

• Grasp synthesis. How to find the best graspable position under energy principles?

• Grasp evaluation. How to evaluate a deformable grasp? There are numerous metrics

for graspings of rigid objects. However, most of them are notapplicable to deformable

grasp.
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• Area contact. The frictional force and moment depend on the pressure distribution

inside the contact area.

• Solids. Solid objects are more common to be grasped in our daily life.
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